Housing Stock
Condition Survey

Report of Findings
December 2016
Contents

1. Introducing the Study ... 5
 Overview of the background and survey methodology
 The Council’s Obligations and Powers .. 5
 Guidance regarding House Condition Surveys ... 5
 How was this Survey Conducted? .. 6
 Comparing the Study Area with England ... 6
 Accuracy of Findings .. 6
 Presentation of Figures ... 7

2. General Housing Characteristics .. 9
 A profile of the housing stock in the study area
 Dwelling Stock .. 9
 Vacant Dwellings .. 9
 Tenure ... 10
 Private Rented Sector .. 10
 Houses in Multiple Occupation .. 12
 Property Management .. 13
 Fire Safety .. 14
 Dwelling Characteristics .. 15
 Dwelling Construction Date .. 15
 Dwelling Type Profile .. 17
 Dwelling Size ... 19
 Dwelling Construction Type ... 20
 Household Characteristics ... 21
 Length of Residence ... 21
 Residents with a disability .. 22
 Adaptations/Equipment ... 22

3. Statutory Minimum Standards .. 25
 The Housing Health and Safety Rating System (HHSRS)
 Obligation to Tackle Housing Health and Safety Hazards .. 25
 Definition of Hazards under the HHSRS and Category Level ... 25
 Hazards Identified by the Survey ... 26
 Category 1 Hazards and Dwelling Stock Characteristics .. 28
4. The Decent Homes Standard

Measuring housing condition against the standard

Introducing the Decent Homes Standard

Applying the Standard

Criterion A: Current Minimum Standards for Housing – Category 1 Hazards identified under the Housing Health and Safety Rating System (HHSRS)

Criterion B: Dwelling State of Repair – Disrepair to major building elements and amenities

Criterion C: Lacking Modern Facilities – Provision of kitchens, bathrooms and other amenities

Criterion D: Thermal Comfort Failures – Provision of efficient heating and effective insulation

Non-decency and Dwelling Stock Characteristics

Costs to remedy Decent Homes Failures

5. Energy Performance

Energy ratings, CO₂ and energy costs

Energy Performance and SAP Ratings

Changes in the SAP Standard

Distribution of SAP Ratings

Energy Efficiency and Dwelling Characteristics

Carbon Dioxide Emissions

Fuel Sources in the Study Area

Energy Efficiency Improvement

Renewable Energy

Fuel Costs

Tackling Fuel Poverty

6. The Private Rented Sector

Policy background and survey findings

Background

The current private rented sector and the role of housing benefit

Overcrowding

Chapter 6 Summary - Private rented sector

7. Conclusions

Summary of findings and policy implications

Introduction

Summary of Findings

Policy Focus

The expansion of the private rented sector

Future demands in relation to the private rented sector

Fire risk

Bringing empty properties back into use
appendix a

housing legislation and requirements

- **housing acts and other legislation** ... 75
- **mandatory duties** ... 76
- **hmo requirements** .. 78
 - **heating** ... 79
 - **space** ... 79
 - **natural light and ventilation** ... 79
 - **fire safety** .. 79
 - **fire alarms** .. 79
 - **means of escape** .. 79
 - **landlord fire safety responsibilities** ... 80
 - **mandatory, additional and selective licensing** ... 80

appendix b

survey sampling, fieldwork and weighting the data

- **sample design** .. 83
- **stock total** ... 83
- **weighting the data** .. 83
- **dealing with non-response** .. 83
- **sampling error** .. 84
- **very small samples and zero results** .. 85

appendix c

list of abbreviations

appendix d

table of figures
1. Introducing the Study
Overview of the background and survey methodology

1.1 Local authorities have an obligation under the Housing Act 2004 to keep housing conditions in their area under review for all tenures, including private sector housing.

1.2 To meet this obligation, Hastings Borough Council commissioned Opinion Research Services (ORS) to carry out a survey on a random sample of private sector housing within seven selected wards (the study area consists of Braybrooke, Castle, Central St. Leonards, Gensing, Old Hastings, Ore and Tressell), referred to throughout this report as a Housing Stock Condition Survey (HSCS). The data collected provides a significant evidence base to inform the Council’s Housing Strategy.

The Council’s Obligations and Powers

1.3 Councils have an obligation to enforce certain statutory minimum standards in housing and have powers that they can use to do this: mandatory duties are outlined in Appendix A, while further non-mandatory powers are available to the Authority under the Housing Act 2004.

1.4 Local authorities are also required by Government to complete certain returns indicating the distribution of their housing stock by tenure and the condition of certain aspects of the stock.

1.5 Hastings Borough Council have also developed a number of policies which set out their overall approach to the private sector housing stock. With specific regard to the study area, at the time of the survey, the council were operating an Additional and Selective licensing scheme for all privately renting landlords requiring that both landlords and property meet certain criteria. More details on licensing schemes can be found in the Mandatory, Additional and Selective Licensing section of Appendix A.

Guidance regarding House Condition Surveys

1.6 Guidance on how to conduct surveys has evolved over time:

» Housing Health and Safety Rating System Guidance (HHSRS) (guidance was issued in 2004; updated 2006).

1.7 Local authorities are encouraged, by both sets of guidance, to make full use of information gathered from house condition surveys in conjunction with data from other sources.

1 http://www.hastings.gov.uk/housing/improvement/selective_licensing_scheme/
How was this Survey Conducted?

1.8 ORS used a random sample approach to the survey, selecting addresses at random from a list of all private sector dwellings in the seven study area wards provided by the Council (that is, all domestic dwellings that are either owner occupied or rented from a private landlord in the study area) and then surveying these. This robust sample approach derived evidence that was then extrapolated to gain an understanding of all private sector housing in the borough.

1.9 It is important to note that all social rented dwellings (all dwellings rented from the Council, or from a housing association or another registered social landlord) were excluded from the survey.

1.10 ORS carried out surveys on 624 dwellings across the borough between June and September 2016. A total of 1,400 addresses were selected at random from a list of all private sector dwellings in the study area in order to derive the 624 surveys, as not all home-owners and tenants were able to take part.

1.11 For all of the 624 surveys conducted, information on the following factors was collected:

- general characteristics of the dwelling;
- condition of the internal and external fabric;
- provision of amenities;
- compliance with housing health and safety standards;
- age and type of elements;
- energy efficiency measures;
- compliance with the Decent Homes Standard: Details about the Decent Homes Standard are outlined in Appendix B.
- socio-economic information about the household (where occupied).

Comparing the Study Area with England

1.12 To gain an understanding of how the study area compares to the rest of England, ORS used the English Housing Survey (EHS), a national survey updated annually. Where possible, the most recent results for 2014-15 have been used in this report, although in some instances the most recently available results for the EHS are for 2013-14.

Accuracy of Findings

1.13 This study was completed using a sample survey. A sample survey works by applying a weight to each dwelling surveyed. Put simply, by surveying 624 dwellings from a total of 20,247 dwellings, we would assign a weight of around 32.45 to each survey (20,247/624 = 32.45). In other words, each property surveyed would represent approximately 32½ properties in the study area. By using as many as 624 surveys and choosing addresses randomly we can be confident that results are representative of the housing stock as a whole.

1.14 Because not all dwellings were surveyed, however, there will always be some difference between the survey results and the real world. This difference is called statistical variance. We described statistical variance in terms of ‘confidence limits’ and ‘standard deviation’:
Standard Deviation is the extent to which a result from the survey, say percentage of dwellings that are privately rented, may be inaccurate either above or below its stated level.

Confidence limits state that if the entire survey process were repeated, out of how many of these repetitions would there be confidence in staying within the variation. Traditionally, and in the case of this report, 95% confidence limits have been used, which state that if the survey were carried out 100 times, in 95 cases the standard deviation would be a given amount. More detail on the calculation of standard deviation is given in the appendices.

Further information about the survey sampling, fieldwork and weighting will be detailed in an appendix.

Presentation of Figures

The figures presented in this report are estimates, since they are based on a sample, not an actual count. Quoting an exact figure for any number, for example: the number of privately rented dwellings is not necessary and would not be accurate. For this reason, as with the EHS, figures are quoted to the nearest 100 dwellings, or nearest 10 for smaller numbers. Percentages within the report are only quoted to 1 decimal place for the same reason. An additional reason for doing this is that most issues will be changing on a daily basis across a housing stock of this size, so the results can only ever be a snap-shot in time.

It is important to emphasise that because social rented stock was not included within the survey, all survey results are based on private sector dwellings (owner occupied and privately rented dwellings) only.

Definition of Area

Although the survey covered the whole of the study area, certain results are shown broken down into sub-areas based on the wards of Braybrooke, Castle, Central St. Leonards, Gensing, Old Hastings, Ore and Tressell.

The locations of the seven Hastings wards comprising the study area can be seen in Figure 1 and Figure 2 below.
Figure 1: Map showing Hastings and surrounding area with study area shaded dark blue

Figure 2: Map of Hastings showing locations and boundaries of study area wards

1. Central St. Leonards
2. Gensing
3. Braybrooke
4. Castle
5. Old Hastings
6. Tressell
7. Ore
2. General Housing Characteristics

A profile of the housing stock in the study area

Dwelling Stock

2.1 The total number of domestic residential dwellings in the study area (excluding social housing stock which was out of scope for the study) is approximately 20,250. This is derived from a list of eligible properties provided by the councils in question. “Domestic” dwellings exclude any commercial properties and “residential” excludes any property not considered habitable living space, according to definition used in the EHS.

Vacant Dwellings

2.2 National policy is to bring vacant dwellings back into use to help both to ease the housing shortage and maximise the use of existing stock.

2.3 Vacant dwellings can be difficult to identify and there are frequently problems in gaining access for surveys; however on the basis of the survey data it is possible to estimate that there are approximately 910 vacant dwellings in the study area, or 4.5% of the stock. The national average is approximately 4.3%.

2.4 Of these properties, the survey estimates that around 580 dwellings (2.9% of the overall stock) are long-term vacant (defined as any dwelling vacant for six months or more, or subject to unauthorised occupation). This figure will be subject to constant fluctuation and is affected by a small sample size making it less reliable. 1.6% of stock is short-term vacant. Some long-term empty properties will not be recorded for Council Tax purposes, while the stock condition survey is based on a sample of properties so we would not expect them to be exactly the same.

<table>
<thead>
<tr>
<th>Reason for vacancy</th>
<th>Short-term vacant</th>
<th>Long-term vacant</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupied</td>
<td>19,340</td>
<td>0.00%</td>
<td>95.53%</td>
</tr>
<tr>
<td>Vacant awaiting new owner</td>
<td>0</td>
<td>90</td>
<td>0.43%</td>
</tr>
<tr>
<td>Vacant awaiting new tenant</td>
<td>180</td>
<td>270</td>
<td>1.33%</td>
</tr>
<tr>
<td>Vacant being modernised</td>
<td>150</td>
<td>150</td>
<td>0.75%</td>
</tr>
<tr>
<td>New never occupied</td>
<td>0</td>
<td>70</td>
<td>0.33%</td>
</tr>
<tr>
<td>All vacancy reasons</td>
<td>330</td>
<td>580</td>
<td>4.47%</td>
</tr>
<tr>
<td>All dwellings</td>
<td>20,250</td>
<td></td>
<td>100.00%</td>
</tr>
</tbody>
</table>

2 This is the total number of rooms in the dwelling which offer “living accommodation”. It includes kitchens if there is additional space to provide a dining area large enough to accommodate a table and chairs (typically an area 2m by 2m additional to kitchen space). It includes a fully converted room in the loft space even if it can only be reached by a fixed ladder or unsafe staircase.
Tenure

2.5 Figure 4 draws tenure comparisons between the stock profile for the study area and that for England as a whole, again excluding social housing stock. The data for dwellings from the HSCS shows a similar proportion of owner occupiers in the study area (50%) to the 2011 Census (51%). The Census 2011 proportion of owner occupiers in the study area is significantly lower than for England as a whole (76%). There is some evidence that the private rented sector in the study area has grown slightly since 2011, but this is in the context of a sample survey so should be treated with caution.

Figure 4: Tenure proportions – Private Dwellings (Source: HSCS 2016, Census 2011, EHS 2014-15)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Households</td>
<td>Percent</td>
<td>Households</td>
</tr>
<tr>
<td>Owner occupied</td>
<td>9,760</td>
<td>50%</td>
<td>9,352</td>
</tr>
<tr>
<td>Privately rented</td>
<td>9,580</td>
<td>50%</td>
<td>9,125</td>
</tr>
<tr>
<td>All Tenures</td>
<td>19,340</td>
<td>100%</td>
<td>18,477</td>
</tr>
</tbody>
</table>

Private Rented Sector

2.6 The past decade-and-a-half since the 2001 Census has seen a substantial and rapid change in the tenure distribution of housing in England. Considering only owner occupied and private tenure, privately rented dwellings in the study area have increased from 36% of dwellings in 2001 up to 49% of all dwellings by 2011. This increase has not been evenly distributed, but, rather, has been affected by market economics and suitability of housing stock.

2.7 The private rented sector has grown in the study area in the last decade. At the time of the 2001 Census there were 5,754 households in the private rented sector, and the 2011 Census confirmed significant growth, indicating that this had risen to 9,125. The HSCS indicates that this number has further risen to 9,580.

2.8 This change in the size of the sector has significant implications for the Council in terms of housing conditions, housing need & demand and housing affordability.

3 We would note that in the private rented households we have included any households who live rent free. This category often includes dwellings which are tied accommodation linked to workers, or households who are living in properties belonging to other family members.
In 2011, across the whole of England, the proportion of households renting privately was 18.2%, with 29.8% of households privately renting across Hastings as a whole. 43.5% of households were renting privately in the study area, therefore more than double the national average and significantly more than the local authority average. Figure 7 compares the proportion of private renting households across the various wards in Hastings. It is clear that the study areas have a particularly large private rented sector compared to other wards in Hastings; and also with comparison to the regional and national figures.

A more detailed explanation of other changes in study area’s private rented sector is provided in Chapter 6.
Houses in Multiple Occupation

2.11 “Dwelling” is a term used to describe both flats and houses. There are approximately 20,250 private sector dwellings in the study area. Flats will often be part of a building that has more than one dwelling, so there will be fewer buildings in an area than dwellings. There are a total of approximately 12,220 buildings in the study area.

Figure 8: Building use profile – Private Dwellings (Source: HSCS 2016)

<table>
<thead>
<tr>
<th>Typology</th>
<th>Dwellings</th>
<th>Percent of dwellings</th>
<th>Buildings</th>
<th>Percent of buildings</th>
</tr>
</thead>
<tbody>
<tr>
<td>House (Single household)</td>
<td>8,750</td>
<td>43.23%</td>
<td>8,750</td>
<td>71.60%</td>
</tr>
<tr>
<td>Converted flat (Single household)</td>
<td>5,190</td>
<td>25.63%</td>
<td>1,410</td>
<td>11.53%</td>
</tr>
<tr>
<td>Purpose built flat (Single household)</td>
<td>3,220</td>
<td>15.92%</td>
<td>950</td>
<td>7.75%</td>
</tr>
<tr>
<td>S257 Non-Compliant Flats</td>
<td>2,690</td>
<td>13.26%</td>
<td>720</td>
<td>5.88%</td>
</tr>
<tr>
<td>HMO</td>
<td>400</td>
<td>1.96%</td>
<td>400</td>
<td>3.25%</td>
</tr>
<tr>
<td>Total</td>
<td>20,250</td>
<td>100.00%</td>
<td>12,220</td>
<td>100.00%</td>
</tr>
</tbody>
</table>

2.12 Where three or more people in two or more households live in the same dwelling (for example, a group of adults sharing a house), this is considered to be a “House in Multiple Occupation” (HMO). Furthermore, there is an additional category of sub-divided dwellings (also classed under the broad umbrella term of HMO) known as S257 HMOs. This is where a building has been converted into flats but does not meet all the building regulations required by section 257 of the Housing Act to be considered entirely separate flats. These properties are known as S257 HMOs, or S257 Non-Compliant flats, and are still technically HMOs. In total this provides for a total of 1,120 HMOs in the study compared to the total licenced which is 911. It is inevitable that some HMOs will not be picked up by any licensing scheme.

2.13 Therefore we can further subdivide HMOs into several broad groups depending on precisely how the property has been subdivided and the level of shared access to amenities, such as:

- A S257 building – Converted flats in a building where more than a third of the flats are privately rented, let on short-term tenancies, and the building conversion does not comply with 1991 (or later) building regulations.
- Shared houses – A dwelling that might otherwise be a family home being shared by a number (3 or more) of un-related adults.
- A Bedsit – A dwelling that has been converted for multiple occupation with individual rooms having some facilities of their own, and often a specified address (room number), but where there are still common parts and some shared amenities in the building.

2.14 There are a wide range of complex variations in the way buildings are used and sub-divided in the real world. It can, on occasion, be hugely difficult to interpret the Act and arrive at a dwelling/building use definition (there are many exceptions and exemptions to take into account). In the case of the survey this has been simplified as far as possible, so results will be subject to a small amount of error, but are as good an indicative picture as it is practicably possible to achieve.

2.15 Note that the Housing Act 2004 defines certain types of HMO as licensable. For these HMOs there is an obligation on the landlord to apply to the local authority, where the HMO is located, for a licence. Local authorities, therefore, must be in a position to manage the application for licences. Specifically,
licensable HMOs are those that are of three or more storeys with five or more residents living as two or more households that share some facilities.

2.16 This qualification for mandatory licensing is currently under review. At the time of writing, the government has recently published its response to the consultation on the proposed changes (Extended mandatory licensing of Houses in Multiple Occupation – a Government Response Document, Nov 2016); and from this it seems likely that the reference to storeys will be removed, thus defining mandatory licenced HMOs more simply as those containing five or more persons and two or more households. Further proposed stipulations affect flats above commercial properties and minimum room sizes.

Property Management

2.17 When a dwelling which was privately rented was surveyed, a series of separate questions were asked of the tenants within the dwelling which covered questions about renting in the private rented sector. The findings in Figure 9 generally indicate that while much of the privately rented sector is likely to be well managed, there are prevalent issues around landlords failing to carry out routine maintenance (only 64.9% fulfil this obligation) and failing to respond to problems in a reasonably time (only 78.3% do). In addition, there are further problems with giving notice before entering the property (only 78.2% give notice) and over a fifth (20.4%) of landlords do not secure their tenant’s deposit in a government backed tenancy deposit scheme (known as a TDP, required for all shorthold tenancies since 2007).

2.18 Across the remaining measures the results are more positive. In particular, the vast majority of landlords provide an emergency number (85.4%), there are written tenancy agreements in a high proportion of cases (91.3%) and 82.6% of dwellings have a working smoke alarm present.

Figure 9: Private tenancy, landlords and privately rented dwellings (Source: HSCS 2016)

<table>
<thead>
<tr>
<th>Issues arising with private sector landlords</th>
<th>Private rented dwellings where household answered ‘Yes’</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number</td>
<td>Proportion</td>
</tr>
<tr>
<td>Is there a written tenancy agreement?</td>
<td>8,750</td>
<td>91.26%</td>
</tr>
<tr>
<td>Was deposit NOT protected under a government back deposit scheme?</td>
<td>1,180</td>
<td>20.37%</td>
</tr>
<tr>
<td>Does the landlord respond to problems in a reasonable time?</td>
<td>7,500</td>
<td>78.29%</td>
</tr>
<tr>
<td>Does the landlord have an emergency number?</td>
<td>8,180</td>
<td>85.41%</td>
</tr>
<tr>
<td>Does the landlord carry out routine maintenance?</td>
<td>6,220</td>
<td>64.89%</td>
</tr>
<tr>
<td>Does the landlord always give notice before entering the property?</td>
<td>7,500</td>
<td>78.22%</td>
</tr>
<tr>
<td>Is there a smoke alarm working and present?</td>
<td>7,480</td>
<td>82.61%</td>
</tr>
<tr>
<td>All occupied private rented dwellings</td>
<td>9,580</td>
<td>100.00%</td>
</tr>
</tbody>
</table>
Fire Safety

2.19 Figure 10 provides a breakdown of the extent to which fire safety measures were present. Figures are broken down between self-contained flats and HMOs.

2.20 Certain aspects of fire safety provision in private rented flats and HMOs in the study area could be considered as requiring improvement, with only 45% of self-contained flats having mains wired smoke detectors (50% of HMOs) and 44% of HMOs having self-closing doors (58% of flats).

2.21 More positively, in the event of fire, 59% have an escape route free from obstructions (65% in self-contained flats but reducing to 42.6% in HMOs.). However this still means that 41% do not.

Figure 10: Fire safety provision in Private Rented Flats and HMOs (Source: HSCS 2016. Note: Dwellings may have more than one fire safety measure, so the number of measures will total more than the total number of dwellings)

<table>
<thead>
<tr>
<th>Fire safety measure</th>
<th>Self-contained flats</th>
<th>HMOs</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number</td>
<td>Percent</td>
<td>Number</td>
</tr>
<tr>
<td>Fire safety notice</td>
<td>3,700</td>
<td>43.99%</td>
<td>1,040</td>
</tr>
<tr>
<td>Mains wired smoke detectors</td>
<td>3,800</td>
<td>45.22%</td>
<td>1,550</td>
</tr>
<tr>
<td>Safe practices</td>
<td>5,950</td>
<td>70.78%</td>
<td>670</td>
</tr>
<tr>
<td>Fire extinguishers</td>
<td>2,210</td>
<td>26.27%</td>
<td>190</td>
</tr>
<tr>
<td>Fire Blankets</td>
<td>70</td>
<td>0.88%</td>
<td>40</td>
</tr>
<tr>
<td>Emergency lighting</td>
<td>5,850</td>
<td>69.49%</td>
<td>1,930</td>
</tr>
<tr>
<td>Self-closing Doors</td>
<td>4,890</td>
<td>58.19%</td>
<td>1,360</td>
</tr>
<tr>
<td>Protected escape route</td>
<td>5,720</td>
<td>67.98%</td>
<td>1,370</td>
</tr>
<tr>
<td>Escape route free from obstruction</td>
<td>5,470</td>
<td>65.01%</td>
<td>1,310</td>
</tr>
<tr>
<td>Alternative escape route</td>
<td>1,770</td>
<td>21.07%</td>
<td>1,020</td>
</tr>
<tr>
<td>Sign Posting</td>
<td>2,580</td>
<td>30.65%</td>
<td>470</td>
</tr>
<tr>
<td>Total number of dwellings</td>
<td>8,410</td>
<td>100%</td>
<td>3,080</td>
</tr>
</tbody>
</table>
Dwelling Characteristics

Dwelling Construction Date

2.22 Figure 11 shows the construction date profile for private dwellings in the study area. The vast majority of dwellings were constructed before 1919 (71% compared to 23% in England as a whole). Only 15% of dwellings were constructed after 1965, which is much lower than the figure for England (43%).

Figure 11: Dwelling age profile England & Study Area – Private Dwellings (Source: HSCS 2016, EHS 2014-15)
Figure 12 provides a breakdown of dwelling construction date by tenure in order to compare the age of owner occupied and privately rented dwellings:

- Almost a third (32%) of owner occupied dwellings date from between 1919 and 1980; however, the proportion of privately rented dwellings in this age band is less than half of this proportion (13%);
- More than three quarters of privately rented dwellings (78%) were built Pre 1919, compared to around two thirds (65%) of owner occupied stock.

Figure 12: Dwelling age profile by tenure in Study Area – Private Dwellings (Source: HSCS 2016)
Dwelling Type Profile

2.23 Figure 13 shows the building type profile for the study area, alongside that for England.

2.24 Following the definition used by the English Housing Survey, terraced houses have been classified as either small (a total floor area of less than 70m²) or medium/large (a total floor area of 70m² or more).

Figure 13: Dwelling type profile Study Area & England – Private Dwellings (Source: HSCS 2016, EHS 2014-15) (NB: due to low numbers, high rise and low rise purpose built flats* have been amalgamated)

*Note: Low rise purpose build flats have fewer than 5 storeys; high rise purpose build flats have 5 storeys or more

2.25 Converted flats are ten times more common in the study area than in England as a whole. The proportion of semi-detached and detached houses is less than a third of the national average, bungalows less than a quarter and the proportions of medium/large terraces and purpose built flats are both noticeably higher than across England.
Figure 14 shows that:

» Converted flats are the most widespread property type in the study area in the privately rented tenure; this property type represents 21% of owner occupied and 57% of privately rented dwellings.

» Medium/large terraced houses (35%) are the most common owner occupied property type, followed by converted flats.

» Purpose built flats represent around a fifth (20%) of privately rented dwellings.

Figure 14: Proportion of dwelling type profile by tenure – Private Dwellings (Source: HSCS 2016)
Dwelling Size

Figure 15 shows the dwelling size profile for the study area, alongside that for England:

» Compared to England as a whole, the study area has a high proportion of smaller dwellings (70 square metres or less), with a correspondingly lower proportion of larger properties (70 square metres or above).

» Larger properties (over 90 square metres) have higher proportions of owner occupation.

» For smaller properties (70 square metres or less) the reverse is the case: these dwellings have much higher rates of private rent.

» The differences in dwelling size between owner occupation and private rent largely reflect the distribution of dwelling types – larger dwelling types such as detached houses and bungalows are more prevalent in the owner occupied sector, whereas smaller terraced housing and flats are more strongly associated with private rent.

Figure 15: Dwelling size profile – Private Dwellings (Source: HSCS 2016, EHS 2014-15)
Dwelling Construction Type

2.28 Figure 16 shows the following regarding construction type:

- 28% of dwellings in the study area have cavity walls, while 55% have solid walls (the remaining 17% of dwellings are a mixture of purpose built flats and other build types)
- Concrete is the most prevalent tile type for both cavity walled and solid walled dwellings.
- Owner occupied dwellings are twice as likely than a private rent to have cavity walls, while solid walled dwellings are more prevalent in the private rented sector (reflecting the strong association between this tenure and older (pre-1919) dwellings)
- However, there is a mixture of build types within both tenures.

Figure 16: Dwelling construction type – Private Dwellings (Source: HSCS 2016)
Household Characteristics

Length of Residence

2.29 Figure 17 considers length of residence and shows:

» 24% of households have been resident for less than two years.

» However, a greater proportion (36%) of privately rented tenants moved to their current address in this time.

» While 57% of owner occupiers have lived in their home for 10 years or more, only 15% of private rented tenants have done so.

2.30 The particularly high proportion of private sector tenants with tenancies of less than two years reflects a relatively more mobile population than that for owner occupiers.

Figure 17: Length of time at current address – Private Dwellings (Source: HSCS 2016)
Residents with a disability

2.31 In order to address the specific housing needs of residents with a disability, the provision of Disabled Facilities Grants (DFG) by local authorities remains mandatory.

2.32 Local authorities must consider this when assigning budgets to housing provision. There are certain factors that mitigate this demand: firstly, DFGs are subject to means testing, except for adaptations for children and the provision of equipment, and secondly, there needs to be an assessment by an Occupational Therapist who will consider whether an adaptation is necessary and appropriate and also by the local authority to establish if any recommended adaptations can be reasonably and practically undertaken taking into account the construction and configuration of the dwelling.

2.33 Where it was indicated that a member of the household suffered from a long term illness or disability, the survey form included a section regarding the existing provision of adaptations or equipment and also whether the occupier felt there was the need for further adaptations or equipment.

Adaptations/Equipment

2.34 There are approximately 4,890 private sector households in the study area which contain a household member with a long-term limiting illness or disability (24%).

2.35 Around 2,770 dwellings have at least one adaption present (14%).

2.36 Figure 18 below shows the proportion of adaptations present for households with someone present with a disability or long-term limiting illness.

Figure 18: Disabled adaptations/equipment present where someone present has a disability or long-term limiting illness – Private Dwellings (Source: HSCS 2016. Note: Dwellings may have more than one adaptation present)
Chapter 2 Summary

Vacant dwellings
» There are approximately 910 vacant dwellings in the study area, which is around 4.5% of the total dwelling stock. 580 of these (2.9% of the overall stock) are long-term vacant.

Tenure
» The HSCS data shows that, of the dwellings that are in scope for the study (i.e. private sector dwellings only), 50% of dwellings are owner occupied and 50% are privately rented. This proportion of owner occupiers is similar to household data from Census (51%) but significantly less than the proportion of owner occupiers in England as a whole (76%).

Houses in Multiple Occupation
» In the private sector of the study area, there are around 720 HMOs that are S257 Non-Compliant, containing a total of 2,690 dwelling spaces; and a further 400 other HMOs.

Property Age
» 71% of dwellings in the area were constructed before 1919 which is much higher than England as a whole (23%). Only 15% of dwellings are dated Post 1965 which is significantly lower than the figure for England (43%)
» The age profile for privately rented dwellings is generally older than that for owner occupation. However there was a greater proportion of private rented dwellings constructed Pre 1919 than that of owner occupiers.

Property Type
» Compared to England as a whole, the study area has proportionally ten times more converted flats, and also more purpose built flats and medium/large terraced houses. There is a far smaller proportion of other types of house (small terraced, semi-detached, detached, bungalow).

Property Size
» The study area has a higher proportion of small dwellings compared to England as a whole. Owner occupied dwellings are likely to have more living space than privately rented dwellings and this is consistent with the tenure breakdown of dwelling type (with detached/semi-detached dwellings, medium/large terraced houses and bungalows being more prevalent in the owner occupied sector).

Property Construction
» 28% of dwellings in the study area have cavity walls, while 55% have solid walls (the remaining 17% is a mixture of purpose built flats and other build types).
» While solid walled dwellings are more prevalent in the private rented sector (reflecting the strong association in the study area between this tenure and older properties), there is a mixture of build types in both the main tenure groups.

Tenure Length
» While 57% of owner occupiers have lived in their home for ten years or more, only 15% of private renters have lived in their home for this period of time.
» Overall, the proportion of households that have been resident for less than two years is 24%, although this rises to 36% if looking only at the private rented sector.
Limiting Long Term Illness

» There are approximately 4,890 households with at least household member with a long-term limiting illness or disability (24%).
3. Statutory Minimum Standards
The Housing Health and Safety Rating System (HHSRS)

Obligation to Tackle Housing Health and Safety Hazards

3.1 Tackling Health and Safety hazards in homes is an important issue both in terms of the quality of the housing stock but also in terms of the contribution this makes to Health and Well Being. The obligation to do so is set out in law.

3.2 From April 2006, Part 1 of the Housing Act 2004 repealed the former housing fitness standard and through statutory instruments and statutory guidance replaced it with the Housing Health and Safety Rating System.

3.3 As described in Appendix A, the Act differentiates between Category 1 and Category 2 hazards. Local authorities have a duty to take ‘the most appropriate course of action’ in respect of any hazard scored under the HHSRS as Category 1. Authorities have discretionary power to take action with Category 2 hazards (which do not score past the threshold for Category 1). Further information on the HHSRS is given in Appendix A and below.

Definition of Hazards under the HHSRS and Category Level

3.4 The Housing Health and Safety Rating System (HHSRS) is a prescribed method of assessing individual hazards, rather than a conventional standard to give a judgment of fit or unfit. The HHSRS is evidence based – national statistics on the health impacts of hazards encountered in the home are used as a basis for assessing individual hazards.

3.5 The HHSRS system deals with a much broader range of issues than the previous fitness standard. It covers a total of 29 hazards in four main groups:

» Physiological Requirements (e.g. damp & mould growth, excess cold, asbestos, carbon monoxide, radon, etc.)
» Psychological Requirements (crowding and space, entry by intruders, lighting, noise)
» Protection Against Infection (domestic hygiene, food safety, personal hygiene, water supply)
» Protection Against Accidents (e.g. falls on the level, on stairs & steps & between levels, electrics, fire, collision...)

3.6 The HHSRS scoring system combines elements:

» the probability that deficiency (i.e. a fault in a dwelling whether due to disrepair or a design fault) will lead to a harmful occurrence (e.g. an accident or illness)
» the spread of likely outcomes (i.e. the nature of the injury or illness).
» if an accident is very likely to occur and the outcome is likely to be extreme or severe (e.g. death or a major or fatal injury) then the score will be very high.
3.7 All dwellings contain certain aspects that can be perceived as potentially hazardous, such as staircases and steps, heating appliances, electrical installation, glass, combustible materials, etc. It is when disrepair or inherent defective design makes an element of a dwelling *significantly more likely* to cause a harmful occurrence that it is scored under the HHSRS.

3.8 The HHSRS generates a numerical Hazard Score, and Hazard Bands have been devised as a simple means for handling the wide range of possible Scores. There are ten Hazard Bands, with Band J being the safest, and Band A being the most dangerous:

» Hazard Bands A to C (i.e. Hazard Scores of 1,000 and above) are the most serious hazards, and these are known as **Category 1** (serious) hazards.

» Hazard Bands D to J (i.e. Hazard Scores below 1,000) are known as **Category 2** (other) hazards.

3.9 A local authority has a duty to deal with any Category 1 hazards found and has discretionary power to deal with Category 2 hazards. The HSCS focuses particularly on Category 1 hazards, but describes all hazards (including Category 2 hazards in Bands D and E) for comparative purposes. All of the main requirements facing local authorities have remained unchanged in the Housing and Planning Act 2016.

Hazards Identified by the Survey

3.10 Surveyors scored a range of HHSRS hazards and the survey form allowed for this. Excess Cold is modelled from survey data, at the individual dwelling level, in order to provide a more accurate picture for this hazard type. The modelling of excess cold hazards by use of SAP (energy efficiency) information was outlined in CLG guidance in June 2006 and has been used by the BRE as part of the housing stock projections for excess cold hazards. It is also the methodology adopted by the English Housing Survey. The modelling of Excess Cold hazards is based on the use of the individual SAP rating for each dwelling, which is scaled to give a hazard score. Where a dwelling has a SAP rating of less than 35, this produces a Category 1 hazard score. Further details about SAP are provided in chapter 5 of the report.

3.11 The overall proportion of dwellings with a Category 1 hazard in the study area is 12.1%, which represents a total of around 2,450 dwellings. This compares with 13.2% of dwellings across England (based most recently available EHS data). The most prominent Category 1 hazards identified are Excess Cold and Falls on Stairs (8.9% and 3% respectively) as illustrated in Figure 19.
3.12 A breakdown of Category 1 hazards by hazard type for each tenure is given in Figure 20:

- The proportion of privately rented dwellings with a Category 1 hazard (13.89%) is appreciably higher than the proportion of owner occupied dwellings (10.24%).
- Excess cold hazards and falls on stairs are the most prominent reason for failure in both tenure groups, although these are more prevalent in the private rented sector (9.7% and 4% respectively) compared to the owner occupied sector (8.2% and 1.9% respectively).
- Failures due to domestic hygiene, falls on level surfaces and ‘other’ reasons not listed in the table are all more prevalent in privately rented dwellings; however, the proportions of dwellings experiencing these hazards are much smaller (all <3%).

Figure 20: Category 1 hazard reasons for failure by tenure (Source: HSCS 2015-16)

<table>
<thead>
<tr>
<th>Category 1 Hazard</th>
<th>Owner occupied</th>
<th>Privately rented</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excess Cold</td>
<td>810</td>
<td>8.18%</td>
<td>1,000</td>
</tr>
<tr>
<td>Fall on Stairs</td>
<td>190</td>
<td>1.87%</td>
<td>420</td>
</tr>
<tr>
<td>Fall on Level Surfaces</td>
<td>110</td>
<td>1.08%</td>
<td>210</td>
</tr>
<tr>
<td>Domestic Hygiene</td>
<td>50</td>
<td>0.46%</td>
<td>240</td>
</tr>
<tr>
<td>Position of Amenities</td>
<td>20</td>
<td>0.21%</td>
<td>70</td>
</tr>
<tr>
<td>Other</td>
<td>60</td>
<td>0.63%</td>
<td>260</td>
</tr>
<tr>
<td>Total hazards</td>
<td>1,230</td>
<td>-</td>
<td>2,190</td>
</tr>
<tr>
<td>Total dwellings with a Category 1 hazards</td>
<td>1,020</td>
<td>10.24%</td>
<td>1,430</td>
</tr>
<tr>
<td>Total Dwellings</td>
<td>9,930</td>
<td>100%</td>
<td>10,320</td>
</tr>
</tbody>
</table>

3.13 231 dwellings (1.1%) have two Category 1 hazards and around 208 dwellings (1%) have three or more Category 1 hazards identified.
Category 1 Hazards and Dwelling Stock Characteristics

This section examines the relationship between those general stock characteristics set out in Chapter 2, with the level of Category 1 hazards by tenure, dwelling type and construction date.

- **Location**: much higher proportions of dwellings in Castle (19.7%) have Category 1 hazards compared to the remaining areas, of which Tressell and Braybrooke are above the study area average.

- **Tenure**: private rented stock (13.9%) has relatively more Category 1 hazards than owner occupation (10.2%)

- **Construction date**: Properties built before 1980 contain all of the Category 1 hazards detected in this study. Of this group, properties build pre 1919 and between 1965 and 1980 contain the highest proportions of category 1 hazards.

- **Dwelling type**: Converted flats and small terraced houses converted flats have the highest proportion of Category 1 hazards (14.3% and 13.6% respectively), with purpose built flats and medium/large terraced houses also being high relative to other property types (both 11.8%). Low rates are seen in detached houses (2.3%).

Figure 21: Category 1 Hazards by area (Source: HSCS 2016)

Figure 22: Category 1 Hazards by tenure (Source: HSCS 2016)
Figure 23: Category 1 Hazards by construction date (Source: HSCS 2016)

- Overall: 12.1%
- Pre 1919: 14.4%
- 1919-1944: 7.0%
- 1945-1964: 12.8%
- 1965-1980: 6.4%
- 1981-1990: 0.0%
- Post 1990: 0.0%

Figure 24: Category 1 Hazards by dwelling type (Source: HSCS 2016)

- Overall: 12.1%
- Purpose built flats: 11.8%
- Converted flats: 14.3%
- Bungalow: 8.9%
- Detached house: 2.3%
- Semi detached house: 9.5%
- Medium/large terraced house: 11.8%
- Small terraced house: 13.6%
Chapter 3 Summary

Category 1 Hazards by Number and Type

- The overall proportion of private sector dwellings with a Category 1 hazard in the study area is 12.1%, which equates to around 2,450 dwellings.

- 231 dwellings (1.1%) have two Category 1 hazards and around 208 dwellings (1%) have three or more Category 1 hazards identified.

- The most prominent Category 1 hazards are excess cold and falls on stairs (8.9% and 3% respectively).

Category 1 Hazard by Location

- The incidence of Category 1 hazards in Castle (19.7%) is the highest in the study area. Also above the overall average are Tressell (15.3%) and Braybrooke (14.7%).

Category 1 Hazard by Tenure

- Private rented stock has a higher rate of Category 1 hazards (13.9%) than owner occupation (10.2%).

- Excess cold is the most common reason for failure for both tenure types, followed by falls on stairs.

Category 1 Hazard and Property Age

- Pre-1919 (14.4%) and 1965-1980 (12.8%) properties are more likely to have a Category 1 hazard than properties built between 1919 and 1965. In those constructed since 1981, the rate of failure is negligible.

Category 1 Hazard and Property Type

- Small terraced houses and converted flats have the highest incidence of Category 1 hazard (13.6% and 14.3% respectively). Detached houses have the lowest incidence of Category 1 hazards (2.3%).
4. The Decent Homes Standard
Measuring housing condition against the standard

4.1 The Decent Homes Standard is a broad measure of housing condition which was introduced to ensure all public sector housing met a minimum standard by 2010. The percentage of vulnerable households in decent homes in the private sector has also been a focus for Government; whilst local authority targets were withdrawn following the Comprehensive Spending Review in 2007, the percentage has remained part of CLG’s own Departmental Strategic Objectives (DSO2, 2.8).

4.2 Aside from governmental obligations and measures, the Decent Homes Standard has become the norm for measuring housing conditions and was analysed for this survey.

Introducing the Decent Homes Standard

4.3 To meet the Standard a dwelling must achieve all four of the following criteria:

Figure 25: Categories for dwelling decency

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>It meets the current statutory minimum standard for housing: At present, this means that it should not have a Category 1 hazard under the HHSRS</td>
</tr>
<tr>
<td>B</td>
<td>It is in a reasonable state of repair – has to have no old and defective major elements</td>
</tr>
<tr>
<td>C</td>
<td>It has reasonably modern facilities and services: Adequate bathroom, kitchen, common areas of flats and is not subject to undue noise</td>
</tr>
<tr>
<td>D</td>
<td>Provides a reasonable degree of thermal comfort – has effective insulation and efficient heating</td>
</tr>
</tbody>
</table>

4.4 A detailed definition of the criteria and their sub-categories are described in the ODPM guidance: “A Decent Home – The definition and guidance for implementation” June 2006.

4.5 If a dwelling was to fail any one of these criteria it would be considered “non-decent”. The term ‘non-decent’ can be seen as derogative However, a non-decent dwelling need not be in a terrible state of repair or in an appalling condition; something as simple as inefficient heating and a lack of insulation can cause a dwelling in otherwise pristine condition to be classified as non-decent.

4.6 The Decent Homes Standard is a relatively low one, so failure to meet it should be regarded as a trigger for action. In some cases, however, it may not be practical to make a dwelling decent and it may also not be in the best interests of the occupiers to do so. The guidance on recording outcomes recognises that there may be instances where it is appropriate to record cases. For example, where work to achieve only partial compliance with the standard has been achieved, or where non-compliance results from the occupier refusing to have work carried out.

4.7 It is possible for a dwelling to fail the Decent Homes Standard for more than one reason: for example, there is often a strong overlap between Category 1 hazards and thermal comfort failures. As a
consequence, the number of dwellings ‘failing’ can total more than the number of non-decent dwellings overall.

Applying the Standard

4.8 The standard is specifically designed in order to be compatible with the kind of information collected as standard during a Housing Stock Condition Survey (HSCS). All of the variables required to calculate the standard are contained within a complete data set.

4.9 The four criteria used to determine the decent homes standard have specific parameters. The variables from the survey used for the criteria are described below:

Criterion A: Current Minimum Standards for Housing – Category 1 Hazards identified under the Housing Health and Safety Rating System (HHSRS)

4.10 Criterion A is simply determined as whether or not a dwelling fails the current minimum standard for housing. This is now the Housing Health and Safety Rating System (HHSRS) – specifically Category 1 hazards.

4.11 Chapter 3 of the report considered the HHSRS and identified 2,450 dwellings where one or more Category 1 hazards were identified. These dwellings all fail under criterion A of the Decent Homes Standard. Figure 26 shows the distribution of Category 1 hazards by tenure:

- Privately rented dwellings have a higher rate of Category 1 hazards (13.9%) compared with owner occupied dwellings (10.2%).

Figure 26: Category 1 hazards by Tenure (Source: HSCS 2016)

<table>
<thead>
<tr>
<th></th>
<th>Owner occupied</th>
<th>Private rent</th>
<th>Overall</th>
<th>EHS (2014)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total dwellings with Category 1 hazards</td>
<td>1,020</td>
<td>1,430</td>
<td>2,450</td>
<td>13.17%</td>
</tr>
<tr>
<td>% of total stock</td>
<td>10.2%</td>
<td>13.9%</td>
<td>12.1%</td>
<td></td>
</tr>
</tbody>
</table>
Criterion B: Dwelling State of Repair – Disrepair to major building elements and amenities

4.12 Criterion B of the Decent Homes Standard looks at the issue of the state of general repair of a dwelling which will fail if it meets one or more of the following:

» One or more key building components are old (which are specifically defined in the criteria) and, because of their condition need replacing or major repair; or

» Two or more other building components are old and, because of their condition need replacing or major repair.

4.13 A building that has component failure before the components expected lifespan does not fail the decent homes standard. A dwelling will be considered to be in disrepair if it fails on one or more major element or two or more minor elements. Major and minor element failures are listed below:

Figure 27: Criterion B – Major Elements (1 or more)

<table>
<thead>
<tr>
<th>Element</th>
<th>Age to be considered old (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major Walls (Repair/Replace >10%)</td>
<td>80</td>
</tr>
<tr>
<td>Roofs (Replace 50% or more)</td>
<td>50 for houses; 30 for flats</td>
</tr>
<tr>
<td>Chimney (1 or more needing partial rebuild)</td>
<td>50</td>
</tr>
<tr>
<td>Windows (Replace 2 or more windows)</td>
<td>40 for houses; 30 for flats</td>
</tr>
<tr>
<td>Doors (Replace 1 or more doors)</td>
<td>40 for houses; 30 for flats</td>
</tr>
<tr>
<td>Gas Boiler (Major Repair)</td>
<td>15</td>
</tr>
<tr>
<td>Gas Fire (Major Repair)</td>
<td>10</td>
</tr>
<tr>
<td>Electrics (Major Repair)</td>
<td>30</td>
</tr>
</tbody>
</table>

Figure 28: Criterion B – Minor Elements (2 or more)

<table>
<thead>
<tr>
<th>Element</th>
<th>Age to be considered old (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kitchen (Major repair or replace 3+ items)</td>
<td>30</td>
</tr>
<tr>
<td>Bathroom (Replace 2+ items)</td>
<td>40</td>
</tr>
<tr>
<td>Central heating distribution (Major Repair)</td>
<td>40</td>
</tr>
<tr>
<td>Other heating (Major Repair)</td>
<td>30</td>
</tr>
</tbody>
</table>

4.14 Dwelling disrepair affects 2,320 private sector properties in the study area, which equates to 11.4% of all eligible dwellings. This compares to a national average of 4.9% for England.

4.15 Figure 29 shows the distribution of disrepair failures by tenure:

» Privately rented dwellings have a higher failure rate for disrepair (17.8%) compared to owner occupied dwellings (4.8%).

Figure 29: Disrepair by Tenure (Source: HSCS 2016)

<table>
<thead>
<tr>
<th></th>
<th>Owner occupied</th>
<th>Private rent</th>
<th>Overall</th>
<th>EHS (2014)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total dwellings in disrepair</td>
<td>480</td>
<td>1,840</td>
<td>2,320</td>
<td>4.89%</td>
</tr>
<tr>
<td>% of total stock</td>
<td>4.8%</td>
<td>17.8%</td>
<td>11.4%</td>
<td></td>
</tr>
</tbody>
</table>
Criterion C: Lacking Modern Facilities – Provision of kitchens, bathrooms and other amenities

4.16 The third criterion of the Decent Homes Standard is that a dwelling should have adequate modern facilities. A dwelling fails the modern facilities test only if it lacks three or more of the following:

- A kitchen which is 20 years old or less
- A kitchen with adequate space and layout
- A bathroom that is 30 years old or less
- An appropriately located bathroom and WC
- Adequate noise insulation
- Adequate size and layout of common parts of flats

4.17 For example, if a dwelling had a kitchen and bathroom older than the specified date, it would only fail the modern facilities test if it also failed another of the identified criteria (e.g. the kitchen had a poor layout or the bathroom was not properly located).

4.18 It may be noted that the age definition for kitchens and bathrooms differs from criterion B. This is because it was determined that a decent kitchen, for example, should generally be less than 20 years old but may have the odd item older than this. The same idea applies for bathrooms.

4.19 Overall, only 300 dwellings failed the Decent Homes Standard on this criterion. As this result corresponds to only 8 surveyed dwellings that failed; it is not possible to meaningfully subdivide those failures to examine their tenure distribution or other characteristics over the area.
Criterion D: Thermal Comfort Failures – Provision of efficient heating and effective insulation

4.20 The dwelling should provide an adequate degree of thermal comfort. Originally this definition was based on the SAP rating of a dwelling, but a number of Local Authorities criticized this approach, as it requires a fully calculated SAP for each dwelling that is being examined. Whilst this is fine for a general statistical approach, such as this study, it does cause problems at the individual dwelling level for determining an appropriate course of action.

4.21 The alternative, laid out in the current guidance, is to examine a dwelling’s heating systems and insulation types. The revised definition requires a dwelling to have both:

» Efficient heating; and

» Effective insulation

4.22 Efficient heating is defined as any gas or oil programmable central heating or electric storage heaters or programmable LPG/solid fuel central heating or similarly efficient heating systems, which are developed in the future. Due to the differences in efficiency between gas/oil heating systems and other heating systems listed, the level of insulation that is appropriate also differs:

» For dwellings with gas/oil programmable heating: at least 50mm loft insulation (if there is loft space) is an effective package of insulation or cavity wall insulation (if there are cavity walls that can be insulated effectively);

» For dwellings heated by electric storage radiators/LPG/programmable solid fuel central heating a higher specification of insulation is required: at least 200mm of loft insulation (if there is a loft) and cavity wall insulation (if there are cavities that can be insulated effectively).

4.23 Any heating sources which provide less efficient options fail in terms of thermal comfort (e.g. all room heater systems are considered to fail the thermal comfort standard).

4.24 Overall, the study area HSCS showed 13.2% of properties have thermal comfort failure, which is close to double the England average (7.85% from the 2014 EHS).

4.25 Figure 30 shows the distribution of thermal comfort failures by tenure:

» Privately rented dwellings have a slightly higher failure rate for thermal comfort inadequacies (13.6%), compared to owner occupied dwellings (12.9%).

Figure 30: Thermal Comfort by Tenure (Source: HSCS 2016)
Prevalence of Non-decency

4.26 The Decent Homes Standard contains 4 criteria against which compliance with the Standard is based. Figure 31 gives a breakdown of any non-compliance by these criteria for the study area.

Figure 31: Reasons for failure of dwellings as a decent home (Source: HSCS 2016, EHS 2014)

<table>
<thead>
<tr>
<th>Reason</th>
<th>Dwellings</th>
<th>Per cent (of non-decent)</th>
<th>Per cent (of stock)</th>
<th>England per cent (EHS 2014)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category 1 hazard dwellings</td>
<td>2,450</td>
<td>47.1%</td>
<td>12.1%</td>
<td>13.2%</td>
</tr>
<tr>
<td>In need of repair</td>
<td>2,320</td>
<td>44.5%</td>
<td>11.4%</td>
<td>4.9%</td>
</tr>
<tr>
<td>Lacking modern facilities</td>
<td>300</td>
<td>5.8%</td>
<td>1.5%</td>
<td>1.8%</td>
</tr>
<tr>
<td>Poor degree of thermal comfort</td>
<td>2,680</td>
<td>51.5%</td>
<td>13.2%</td>
<td>7.8%</td>
</tr>
<tr>
<td>Total failures</td>
<td>7,750</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total dwellings failing the Decent Homes Standard</td>
<td>5,200</td>
<td>100.0%</td>
<td>25.7%</td>
<td>21.8%</td>
</tr>
</tbody>
</table>

4.27 The survey estimates that 5,200 dwellings in the study area fail the Decent Homes Standard (25.7%). Most of these dwellings fail on only one criteria of the standard, but 1,302 dwellings (6.5%) fail on two criteria and around 533 dwellings (2.6%) fail on three or more criteria. It is worth noting that most dwellings with more than one failure may only have one problem, as many dwellings with a Category 1 hazard for Excess Cold will also fail the Thermal Comfort criteria.

4.28 The proportion of dwellings that fail the Decent Homes Standard is somewhat higher than the national rate (21.8%), with some small differences from national profile in terms of the main reasons for failure:

» In the study area, the most common reason for failure is having a poor degree of thermal comfort (13.2% of properties in the study area vs 7.8% in England as a whole).

» Nationally, having a category 1 hazard present is the most common reason for failure (13.2%). The study area is below the national average in this respect but is still high at 12.1%.

» Rates of failure against the criterion for requiring repairs is more than double the national rates (11.4% compared to 4.9%).

» However, the proportion of dwellings failing the standard due to lacking modern facilities is slightly higher nationally (1.8%) than in the study area (1.5%).

» In the private rented sector, 13.8% of stock fails the standard because of a category 1 hazard, this is 44.1% of all non-decent, privately rented dwellings. Of these non-decent, privately rented dwellings, 56.7% are in need of repair (17.8% of total private rented stock) and 43.2% fail on thermal comfort (13.6% of total private rented stock).
Non-decency and Dwelling Stock Characteristics

4.29 Figure 32 to Figure 35 show the rates of non-decent dwellings by location, tenure, construction date and dwelling type.

4.30 Nationally, tenure analysis shows there is a clear difference between the rates of non-decenty found in private rented dwellings (which is higher) and owner occupied dwellings. This can also be seen in the study area, where the rate of non-decency for privately rented dwellings (31.4%) is higher than for owner occupied (19.7%).

Figure 32: Non-decency by tenure (Source: HSCS 2016)

In terms of how rates of non-decency vary by location within the local authority:

» The rate of non-decency is highest in Castle (41.5%);

» The rate of failure is slightly above the study area average in Central St Leonards and Braybrooke (both 26.4%), and lowest in Gensing (14.2%).

Figure 33: Non-decency by area (Source: HSCS 2016)
In terms of rates of non-decency among dwellings in each construction date band:

» Older dwellings tend to show a higher rate of non-decency than other areas (in particular, the rate of non-decency is nearly a third in dwellings built before 1919, and is nearly a quarter in dwellings built between 1919 and 1944);

» The lowest rate of non-decency is in stock from 1981-1990 (3.5%).

Figure 34: Non-decency by build date (Source: HSCS 2016)

In terms of rates of non-decency among dwellings by type:

» The highest levels of non-decency are found in purpose built flats (29.7%) along with converted flats, small terraced houses and bungalows (28.1%, 26.9% and 26.6% respectively);

» The lowest levels of non-decency are found in detached houses (13.7%), with semi-detached houses (21.9%) and medium/large terraced houses (22.5%) also having rates of failure appreciably below the study area average (25.7%).

Figure 35: Non-decency by dwelling characteristics (Source: HSCS 2016)
Costs to remedy Decent Homes Failures

4.34 Having determined the reasons for dwellings being classified as non-decent, it is possible to indicate what level of repairs or improvements would be needed to make all dwellings decent.

4.35 The cost to remedy non-decency was determined by examining the specific failures of each non-decent dwelling and determining the work necessary to make the dwelling decent. This was done for each criterion of the standard and Figure 36 shows the cost distribution for all non-decent dwellings in the stock, with the costs being based on the assumption that only those items that cause dwellings to be non-decent are corrected.

4.36 The total cost to remedy non-decency (across all tenures, excluding social housing) is estimated to be £27.6 million, with an average cost per dwelling of £3,560. The owner occupied sector accounts for just under £7 million of the total costs to remedy; the private rented sector accounts for just under a further £21 million (Figure 37).

Figure 36: Repair cost by non-decency reason (Source: HSCS 2016)

<table>
<thead>
<tr>
<th>Reason</th>
<th>Total Cost (£ million)</th>
<th>Cost per dwelling (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category 1 hazard dwellings</td>
<td>10.0</td>
<td>4,090</td>
</tr>
<tr>
<td>In need of repair</td>
<td>11.4</td>
<td>4,940</td>
</tr>
<tr>
<td>Poor degree of thermal comfort</td>
<td>7.0</td>
<td>2,630</td>
</tr>
<tr>
<td>Lacking modern facilities</td>
<td>3.0</td>
<td>10,000</td>
</tr>
<tr>
<td>Total (and average per dwelling)</td>
<td>27.6</td>
<td>3,560</td>
</tr>
</tbody>
</table>

Figure 37: Repair cost by tenure for non-decency reason (Source: HSCS 2016)

<table>
<thead>
<tr>
<th>Reason</th>
<th>Tenure – Owned</th>
<th></th>
<th>Tenure – Private Rent</th>
<th></th>
<th>Overall</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Cost (£ million)</td>
<td>Cost per dwelling (£)</td>
<td>Total Cost (£ million)</td>
<td>Cost per dwelling (£)</td>
<td>Total Cost (£ million)</td>
<td>Cost per dwelling (£)</td>
</tr>
<tr>
<td>Category 1 hazard dwellings</td>
<td>3.3</td>
<td>3,250</td>
<td>6.7</td>
<td>4,690</td>
<td>10.0</td>
<td>4,090</td>
</tr>
<tr>
<td>In need of repair</td>
<td>1.4</td>
<td>2,900</td>
<td>10.0</td>
<td>5,460</td>
<td>11.4</td>
<td>4,940</td>
</tr>
<tr>
<td>Poor degree of thermal comfort</td>
<td>2.9</td>
<td>2,230</td>
<td>4.2</td>
<td>2,990</td>
<td>7.0</td>
<td>2,630</td>
</tr>
<tr>
<td>Lacking modern facilities</td>
<td>0.6</td>
<td>8,620</td>
<td>2.4</td>
<td>10,420</td>
<td>3.0</td>
<td>10,000</td>
</tr>
<tr>
<td>Total (and average per dwelling)</td>
<td>6.7</td>
<td>2,370</td>
<td>20.8</td>
<td>4,250</td>
<td>27.6</td>
<td>3,560</td>
</tr>
</tbody>
</table>
Chapter 4 Summary – Decent Homes Standard

Decent Homes – Category 1 hazards

» Category 1 hazards affect around 2,450 private sector properties in the study area (12.1%).
» The incidence of Category 1 hazards is higher in private rented dwellings (13.9%) relative to owner occupied dwellings (10.2%).

Decent Homes - Disrepair

» Dwelling disrepair affects around 2,320 properties in the study area which is approximately 11.4% of all private sector dwellings.
» The failure rate for disrepair is significantly higher for privately rented dwellings (17.8%) than for owner occupied dwellings (4.8%).

Decent Homes – Lacking Modern Facilities

» Overall, only 300 dwellings failed the Decent Homes Standard on lacking modern facilities.

Decent Homes - Thermal Comfort

» 2,680 dwellings in the study area have a thermal comfort failure equating to around 13.2% of the dwelling stock.
» Privately rented dwellings have a slightly higher rate of failure compared with owner occupied dwellings.

Decent Homes - Overall

» The Survey estimates that around 5,200 dwellings in the study area fail the Decent Homes Standard and this is approximately 25.7% of all private sector dwellings. 1,302 dwellings (6.5%) fail on two criteria and around 533 dwellings (2.6%) fail on three or more criteria.
» Within the study area; the most common reason for failure is having a poor degree of thermal comfort.

Decent Homes - location

» Castle has the highest rate of non-decency of the studied wards (41.5%). Next highest were Central St Leonards and Braybrooke (both with 26.4%) with similar levels to the study area average of 25.7%).

Decent Homes - tenure

» Privately rented dwellings show higher rates of non-decency (31.4%) compared with those that are owner occupied (19.7%).

Decent Homes – property age

» The highest levels of non-decency are found in properties built pre 1919 followed by those between 1919 and 1944. The lowest levels are found in properties built between 1981 and 1990.
Decent Homes – costs to remedy Decent Homes – property type

» The highest levels of non-decency are found in purpose built flats (29.7%), converted flats (28.1%) along with small terraced houses and bungalows (26.9% and 26.6% respectively), while the lowest levels are found in detached houses (13.7%).

» The estimated total cost to remedy non-decency in the private housing sector is £27.6 million, with an average cost per dwelling of £3,560.
5. Energy Performance

Energy ratings, CO₂ and energy costs

Energy Performance and SAP Ratings

5.1 The Standard Assessment Procedure or SAP is a government rating for energy efficiency. It is used in this report in conjunction with annual CO₂ emissions figures, calculated on fuel consumption, and the measure of that fuel consumption in kilo Watt hours (kWh), to examine energy efficiency.

5.2 The SAP rating in this report was the energy rating for a dwelling and was based on the calculated annual energy cost for space and water heating. The calculation assumes a standard occupancy pattern, derived from the measured floor area so that the size of the dwelling did not strongly affect the result. It is expressed on a 0-100 scale. The higher the number the better the energy rating for that dwelling.

Changes in the SAP Standard

5.3 The Government’s SAP rating has been changed a number of times over the years and these changes can have an important effect on comparing SAP ratings. The most significant changes came in 2001 and 2005, which involved a shift to a 1 to 120 scale in 2001 and then a reversion to a 1 to 100 scale in 2005. By using a 1 to 120 scale SAP ratings were effectively ‘stretched’ meaning that average SAP ratings cannot be compared like-for-like between now and some earlier figures.

5.4 The software used to calculate SAP ratings for this report was RdSAP2012.

Distribution of SAP Ratings

5.5 Figure 38 shows the energy performance distribution by tenure incorporating the same banding system used since the EHCS 2007:

» Overall, the band which accounts for the highest proportion of stock is Band D (55-68) (48.4%). This is also the case nationally (52.6%).

» A slightly higher proportion of dwellings in the study area are in Bands A-C (69-100) (24.8%) relative to the whole of England (21.9%) (although it could also be noted that the proportion of dwellings in Bands A-B is less than 0.3% and lower than the 1% national average).

» 26.9% of dwellings are in are in the lowest Bands E (39-54), F (21-38) and G (1-20), which is somewhat higher than the national result of 25.5% found by the EHS 2014. At the extremes, the proportion in the two lowest Bands F and G (11.2%) is significantly higher than the corresponding national rate (6.5%).

» By comparing tenures within the study area, proportionally it can be seen that similar privately rented dwellings lie in Bands E to G (26.4%), relative to owner occupied dwellings (27.4%). These are both higher than national average rate for bands E-G (25.6%).
The average SAP rating in the study area is 58 (Band D), compared to an average SAP rating of 60 (Band D) nationally based on the findings of the EHS 2013-14.

Figure 38: Energy Performance SAP banded (Source: HSCS 2016, EHS 2014)

<table>
<thead>
<tr>
<th>EPC SAP Range Banded</th>
<th>Owner occupied</th>
<th>Private rent</th>
<th>Overall</th>
<th>EHS 2013-14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Band A (92-100)</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>1.0%</td>
</tr>
<tr>
<td>Band B (81-91)</td>
<td>0.5%</td>
<td>0.0%</td>
<td>0.3%</td>
<td></td>
</tr>
<tr>
<td>Band C (69-80)</td>
<td>19.9%</td>
<td>28.8%</td>
<td>24.5%</td>
<td>20.9%</td>
</tr>
<tr>
<td>Band D (55-68)</td>
<td>52.2%</td>
<td>44.8%</td>
<td>48.4%</td>
<td>52.6%</td>
</tr>
<tr>
<td>Band E (39-54)</td>
<td>18.0%</td>
<td>13.5%</td>
<td>15.7%</td>
<td>19.1%</td>
</tr>
<tr>
<td>Band F (21-38)</td>
<td>6.0%</td>
<td>8.7%</td>
<td>7.4%</td>
<td>5.0%</td>
</tr>
<tr>
<td>Band G (1-20)</td>
<td>3.4%</td>
<td>4.2%</td>
<td>3.8%</td>
<td>1.5%</td>
</tr>
<tr>
<td>Total</td>
<td>100.00%</td>
<td>100.00%</td>
<td>100.00%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Energy Efficiency and Dwelling Characteristics

5.6 The physical characteristics of a dwelling have major effects on the energy efficiency of a dwelling. The number of exposed external walls and the construction materials and methods used; these all affect the overall heat loss and therefore the energy efficiency. Different types and ages of dwellings will also have different energy characteristics.

5.7 The following Figure 39 to Figure 42 provide a breakdown of average SAP ratings by tenure, building type and construction date.
5.8 **Location:** SAP ratings range from 53 in Castle (Band E), to 61 in Tressell and Ore (Band D).

Figure 39: SAP by area (Source: HSCS 2016)

5.9 **Construction date:** dwellings in the oldest band (pre-1919) have the lowest average SAP rating (56; Band D), while the newest dwellings (post-1990) have the highest (69; bottom of Band C). Average ratings for the remaining bands are all in the range of 59-64 (Band D). The overall SAP rating is significantly reduced by the prevalence of Pre-1919 properties in the study area (71% of all stock). The average SAP rating for properties built after 1919 is 62 (Band D).

Figure 40: SAP by age of dwelling (Source: HSCS 2016)
5.10 **Construction type:** detached houses and bungalows have the lowest average rating (56; Band D). Terraced houses (Medium/Large: 59, Small: 60; both Band D) have average SAP ratings that are slightly above the study area average of 58 (Band D).

Figure 41: SAP by dwelling type (Source: HSCS 2016)

![Diagram showing SAP by dwelling type]

Tenure: The average SAP rating for owner occupied dwellings is the same as that for privately rented dwellings (58; top of Band D).

Figure 42: SAP by tenure (Source: HSCS 2016)

![Diagram showing SAP by tenure]
Carbon Dioxide Emissions

5.11 From 2015 onwards, it has been the government’s aim to have insulated all the lofts and cavity walls where it is practicable to do so, although it is considered that this will not be enough to achieve the ambitions for the 2050 target of cutting emissions by 80%. Once these options have been exhausted, more substantial changes are being considered, such as small-scale energy generation and solid wall insulation, with the aim of helping up to seven million homes by 2020.

5.12 The Energy Companies Obligation (ECO) (the Government’s new domestic energy efficiency programme which has replaced the previous CERT and CESP programmes, both of which came to a close at the end of 2012). The ECO Order, now The Energy Companies Obligation Order, came into force on 5 December 2012 and Phase 1 of ECO formally started on 1 January 2013. ECO works to reduce carbon emissions and tackle fuel poverty by providing insulation and heating packages to low income and vulnerable households and insulation measures to low income communities.

5.13 ECO creates a legal obligation on energy suppliers to improve the energy efficiency of households through the establishment of three distinct targets:

- **Carbon Emissions Reduction Obligation** (20.9 million lifetime tonnes of carbon dioxide). Focusing on hard to treat homes and, in particular, measures that cannot be fully funded through other means. Solid wall insulation and hard-to-treat cavity wall insulation are the primary measures that the Government intends to be promoted under this target. Other insulation measures and connections to district heating systems are also eligible if they are promoted as part of a package that includes solid wall insulation or hard-to-treat cavity wall insulation.

- **Carbon Saving Community Obligation** (6.8 million lifetime tonnes of carbon dioxide). Focusing on the provision of insulation measures and connections to district heating systems to domestic energy users that live within an area of low income. This target has a sub-target, which states that at least 15% of each supplier’s Carbon Saving Community Obligation must be achieved by promoting measures to low income and vulnerable households living in rural areas.

- **Home Heating Cost Reduction Obligation** (£4.2bn of lifetime cost savings). Requiring energy suppliers to provide measures which improve the ability of low income and vulnerable households (the ‘Affordable Warmth Group’) to affordably heat their homes. A heating qualifying action is the installation of a measure that will result in a heating saving; including the replacement or repair of a qualifying boiler.
5.14 Figure 43 compares CO₂ emissions in owner occupied and privately rented dwellings for the study area. 18% of privately rented dwellings emit less than two tonnes per annum compared with only 4% of owner occupied dwellings. In addition, owner occupied dwellings are similarly likely to have emission levels between two and six tonnes per annum (74%, compared to 72% of private rent).

5.15 For emissions above 6 tonnes per annum the differences between private rent and owner occupation are more pronounced, and proportionally there are fewer privately rented dwellings in this category (10% compared to 20% owner occupied).

Figure 43: Annual dwelling CO₂ emissions (Source: HSCS 2016)

Fuel Sources in the Study Area

5.16 The majority (81%) of households use mains gas as the primary heating fuel with electricity being secondary (18%); as such the CO₂ emissions figures from solid fuel sources are subject to high error margins due to very small surveys of these fuel types (Figure 44).

Figure 44: Main fuel CO₂ emissions (Source: HSCS 2016)

<table>
<thead>
<tr>
<th>Main Fuel</th>
<th>CO₂ (tonnes)</th>
<th>Dwellings</th>
<th>Average CO₂ per dwelling (kg per annum)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mains Gas</td>
<td>62,500</td>
<td>16,460</td>
<td>3,800</td>
</tr>
<tr>
<td>Solid Fuel (coal etc.)</td>
<td>700</td>
<td>90</td>
<td>7,500</td>
</tr>
<tr>
<td>Electricity</td>
<td>19,800</td>
<td>3,700</td>
<td>5,400</td>
</tr>
<tr>
<td>Total</td>
<td>83,100</td>
<td>20,250</td>
<td>4,100</td>
</tr>
</tbody>
</table>
Energy Efficiency Improvement

5.17 Figure 45 shows the heating type found in the study area by dwelling type:

» 80% of dwellings have a central heating system.

» Purpose built and converted flats have lower levels of central heating compared with other dwelling types; larger proportions of these rely on storage heating.

» Houses and bungalows all show relatively high rates using central heating. These dwellings have a stronger association with the owner-occupied sector and higher use of mains gas.

Figure 45: Heating type by dwelling type (Source: HSCS 2016)

<table>
<thead>
<tr>
<th>Dwelling Type</th>
<th>Central heating</th>
<th>Warm air systems</th>
<th>Room heaters</th>
<th>Storage heating</th>
<th>Communal heating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small terraced house</td>
<td>85.1%</td>
<td>0.0%</td>
<td>8.1%</td>
<td>6.8%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Medium/Large terraced house</td>
<td>90.3%</td>
<td>0.0%</td>
<td>3.0%</td>
<td>6.8%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Semi-detached house</td>
<td>91.6%</td>
<td>0.0%</td>
<td>4.3%</td>
<td>4.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Detached house</td>
<td>89.6%</td>
<td>4.2%</td>
<td>0.0%</td>
<td>6.2%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Bungalow</td>
<td>95.6%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>4.4%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Converted flat</td>
<td>75.4%</td>
<td>0.0%</td>
<td>9.0%</td>
<td>15.6%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Low rise purpose built flat</td>
<td>63.9%</td>
<td>0.0%</td>
<td>6.1%</td>
<td>22.3%</td>
<td>7.7%</td>
</tr>
<tr>
<td>Owner occupied</td>
<td>73.8%</td>
<td>0.0%</td>
<td>8.2%</td>
<td>16.0%</td>
<td>2.0%</td>
</tr>
<tr>
<td>Private rented</td>
<td>86.6%</td>
<td>0.5%</td>
<td>3.6%</td>
<td>8.8%</td>
<td>0.5%</td>
</tr>
<tr>
<td>All dwellings</td>
<td>80.0%</td>
<td>0.2%</td>
<td>6.0%</td>
<td>12.5%</td>
<td>1.3%</td>
</tr>
</tbody>
</table>
5.18 The level of loft insulation provision is also an important factor in energy efficiency (Figure 46):

» 8.9% of dwellings have loft insulation that is either close to or above the recommended depth (i.e. 250 mm or above – the recommended depth is 270mm).

» Just over half of the stock (55.4%) has a loft with 100mm to 200mm of insulation (compared to the recommended 270mm), while 14.6% has less than this and 3.8% has no insulation whatsoever.

» The remaining 21.2% of dwellings have no loft (and these are converted and low rise purpose built flats).

5.19 Therefore, there remains significant scope to further improve dwelling energy efficiency and reduce heat loss, energy consumption and CO₂ emissions through loft insulation.

5.20 Furthermore, the provision of different heating systems and insulation within the dwelling stock also provides scope for other improvements such as additional insulation, improved heating, draught proofing etc.

Figure 46: Loft insulation by dwelling type (Source: HSCS 2016. Note: as this is a dwelling based survey, any flat not directly under a pitched roof counts as having no loft)
Renewable Energy

5.21 Renewable energy from natural resources offers considerable potential to improve energy efficiency by helping dwellings use less energy and produce less carbon dioxide. Recent technological innovation has enhanced energy deliverables to be derived from this source.

5.22 Surveys identified, or confirmed with householders, the proportion of lights in the dwelling that use low energy light-bulbs. They were also asked to establish whether the dwelling currently uses solar water heating or photo voltaic (or PV) panels (to generate electricity).

5.23 The results, divided by tenure, are illustrated in Figure 47:

- PV Panels: 300 dwellings are estimated as having PV panels, the majority in owner occupied homes.
- Solar water heating: 400 properties are estimated as having this form of water heating, overwhelmingly in owner occupied dwellings.
- Low energy light-bulbs: these are an established energy efficiency measure and the estimates indicate that there has been a substantial take up already. Given the removal from sale of all conventional light bulbs in 2011, these figures will inevitably increase further, and within five years it is likely that virtually all light-bulbs will be low energy.

Figure 47: Low energy light-bulbs and solar water heating (Source: HSCS 2016)

<table>
<thead>
<tr>
<th>Energy efficiency measures</th>
<th>Owner occupied</th>
<th>Privately rented</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low energy bulbs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No low energy bulbs</td>
<td>1,200</td>
<td>1,600</td>
</tr>
<tr>
<td>Up to 50% low energy bulbs</td>
<td>1,300</td>
<td>1,500</td>
</tr>
<tr>
<td>More than 50% low energy</td>
<td>5,100</td>
<td>5,200</td>
</tr>
<tr>
<td>100% low energy bulbs</td>
<td>2,300</td>
<td>2,000</td>
</tr>
<tr>
<td>Solar water heating</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solar water heating</td>
<td>300</td>
<td>100</td>
</tr>
<tr>
<td>Photoelectrics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photoelectrics</td>
<td>200</td>
<td>100</td>
</tr>
</tbody>
</table>
Fuel Costs

The survey showed that over a third of households (37.3%) spend between £600 and £900 per year on fuel costs, with around another fifth (20%) spending between £900 and £1,200 per annum. Around one in six (16.2%) spend more than £1,200 per annum; whereas over a quarter (26.6%) spend under £600 per annum.

Figure 48 shows that costs are typically higher for households living in older properties – spending of over £1,500 per annum increases dramatically with the age of the property; with 11.4% of households in pre-1919 properties spending over £1,500 per year on fuel.

Figure 48: Annual fuel costs by dwelling age (Source: HSCS 2016)

<table>
<thead>
<tr>
<th>Dwelling Age</th>
<th>Under £600 per annum</th>
<th>Between £600 and £900 per annum</th>
<th>Between £900 and £1,200 per annum</th>
<th>Between £1,200 and £1,500 per annum</th>
<th>Over £1,500 per annum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre 1919</td>
<td>25.53%</td>
<td>37.04%</td>
<td>18.29%</td>
<td>7.75%</td>
<td>11.38%</td>
</tr>
<tr>
<td>1920-1944</td>
<td>8.04%</td>
<td>46.65%</td>
<td>30.53%</td>
<td>5.32%</td>
<td>9.46%</td>
</tr>
<tr>
<td>1945-1964</td>
<td>33.34%</td>
<td>45.79%</td>
<td>8.54%</td>
<td>6.91%</td>
<td>5.42%</td>
</tr>
<tr>
<td>1965-1980</td>
<td>27.13%</td>
<td>34.06%</td>
<td>32.28%</td>
<td>5.43%</td>
<td>1.10%</td>
</tr>
<tr>
<td>1981-1990</td>
<td>48.45%</td>
<td>18.22%</td>
<td>33.32%</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td>Post 1990</td>
<td>59.47%</td>
<td>32.04%</td>
<td>5.51%</td>
<td>0.00%</td>
<td>2.98%</td>
</tr>
<tr>
<td>All dwellings</td>
<td>26.59%</td>
<td>37.29%</td>
<td>19.97%</td>
<td>6.80%</td>
<td>9.35%</td>
</tr>
</tbody>
</table>
5.26 Figure 49 shows that fuel costs typically vary in line with the size of the dwelling, with (broadly speaking) larger dwellings having higher costs. For example, almost a quarter of detached houses (23.9%) have costs of over £1,500 per annum.

5.27 It is also worth noting that owner occupied properties tend to be more expensive to heat than privately rented. The private rented sector has more than twice the proportion of dwellings in the under £600 per annum heating category compared to owner occupation (35.9% vs 16.9%), whereas owner occupied properties have more than twice the proportion of privately rented properties in the over £1500 per annum category (5.3% for rented vs 13.6% owner occupied). This correlates strongly with the tendency for very small properties (thus costing less to heat) to be privately rented, whereas larger properties are more likely to be owner occupied (see Figure 15).

Figure 49: Annual fuel costs by dwelling type, loft insulation and tenure (Source: HSCS 2016)

<table>
<thead>
<tr>
<th>Dwelling Characteristic</th>
<th>Under £600 per annum</th>
<th>Between £600 and £900 per annum</th>
<th>Between £900 and £1,200 per annum</th>
<th>Between £1,200 and £1,500 per annum</th>
<th>Over £1,500 per annum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small terraced house</td>
<td>43.96%</td>
<td>39.37%</td>
<td>9.96%</td>
<td>4.58%</td>
<td>2.13%</td>
</tr>
<tr>
<td>Medium/Large terraced house</td>
<td>6.20%</td>
<td>39.41%</td>
<td>29.61%</td>
<td>12.22%</td>
<td>12.56%</td>
</tr>
<tr>
<td>Semi-detached house</td>
<td>7.82%</td>
<td>37.26%</td>
<td>27.90%</td>
<td>9.80%</td>
<td>17.21%</td>
</tr>
<tr>
<td>Detached house</td>
<td>4.45%</td>
<td>20.05%</td>
<td>44.15%</td>
<td>7.46%</td>
<td>23.90%</td>
</tr>
<tr>
<td>Bungalow</td>
<td>31.24%</td>
<td>20.11%</td>
<td>33.98%</td>
<td>8.86%</td>
<td>5.81%</td>
</tr>
<tr>
<td>Converted flat</td>
<td>36.35%</td>
<td>38.82%</td>
<td>14.12%</td>
<td>4.05%</td>
<td>6.66%</td>
</tr>
<tr>
<td>Low rise purpose built flat</td>
<td>43.20%</td>
<td>38.15%</td>
<td>9.23%</td>
<td>4.39%</td>
<td>5.03%</td>
</tr>
<tr>
<td>Under 50 sq metres</td>
<td>50.53%</td>
<td>33.40%</td>
<td>7.68%</td>
<td>1.84%</td>
<td>6.55%</td>
</tr>
<tr>
<td>Between 50 and under 70 sq metres</td>
<td>46.59%</td>
<td>37.37%</td>
<td>9.98%</td>
<td>3.76%</td>
<td>2.30%</td>
</tr>
<tr>
<td>Between 70 and under 90 sq metres</td>
<td>15.42%</td>
<td>42.77%</td>
<td>26.70%</td>
<td>8.44%</td>
<td>6.68%</td>
</tr>
<tr>
<td>Between 90 and under 110 sq metres</td>
<td>3.28%</td>
<td>56.10%</td>
<td>29.90%</td>
<td>3.84%</td>
<td>6.88%</td>
</tr>
<tr>
<td>From 110 sq metres and over</td>
<td>2.81%</td>
<td>18.80%</td>
<td>32.28%</td>
<td>17.59%</td>
<td>28.52%</td>
</tr>
<tr>
<td>Owner occupied</td>
<td>16.93%</td>
<td>36.68%</td>
<td>24.49%</td>
<td>8.35%</td>
<td>13.56%</td>
</tr>
<tr>
<td>Privately rented</td>
<td>35.89%</td>
<td>37.87%</td>
<td>15.62%</td>
<td>5.32%</td>
<td>5.31%</td>
</tr>
<tr>
<td>All dwellings</td>
<td>26.59%</td>
<td>37.29%</td>
<td>19.97%</td>
<td>6.80%</td>
<td>9.35%</td>
</tr>
</tbody>
</table>
5.28 Figure 50 demonstrates that those properties identified with an excess cold hazard under the HHSRS typically have higher fuel costs:

- More than three fifths (60.8%) of those with a Category 1 hazard for excess cold pay more than £1,500 per annum for their fuel (and 85.4% pay more than £1,200 per annum)
- 30.6% of those with a Category 2 hazard pay more than £1,200 per annum for their fuel.
- Only 6.4% of those with no excess cold hazards pay more than £1,500 annually.

5.29 Similarly, over a third (36.4%) of dwellings with inadequate thermal comfort require costs of more than £1,200 per annum (compared to only 13.1% of dwellings with adequate thermal comfort).

Figure 50: Annual fuel costs by excess cold, thermal comfort and Decent Homes (Source: HSCS 2016)

<table>
<thead>
<tr>
<th>Dwelling Characteristic</th>
<th>Under £600 per annum</th>
<th>Between £600 and £900 per annum</th>
<th>Between £900 and £1,200 per annum</th>
<th>Between £1,200 and £1,500 per annum</th>
<th>Over £1,500 per annum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excess cold (HHSRS hazard)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Category 1 hazard</td>
<td>0.00%</td>
<td>0.00%</td>
<td>14.59%</td>
<td>24.65%</td>
<td>60.76%</td>
</tr>
<tr>
<td>Category 2 hazard</td>
<td>0.00%</td>
<td>25.22%</td>
<td>44.21%</td>
<td>15.76%</td>
<td>14.80%</td>
</tr>
<tr>
<td>None</td>
<td>33.77%</td>
<td>43.41%</td>
<td>16.78%</td>
<td>3.37%</td>
<td>2.67%</td>
</tr>
<tr>
<td>Thermal Comfort</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adequate thermal comfort</td>
<td>29.06%</td>
<td>39.31%</td>
<td>18.57%</td>
<td>6.67%</td>
<td>6.40%</td>
</tr>
<tr>
<td>Inadequate thermal comfort</td>
<td>10.40%</td>
<td>24.04%</td>
<td>29.18%</td>
<td>7.67%</td>
<td>28.70%</td>
</tr>
<tr>
<td>Decent Homes Standard</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decent Dwelling</td>
<td>30.96%</td>
<td>40.13%</td>
<td>19.23%</td>
<td>5.52%</td>
<td>4.16%</td>
</tr>
<tr>
<td>Non Decent Dwelling</td>
<td>13.94%</td>
<td>29.05%</td>
<td>22.11%</td>
<td>10.51%</td>
<td>24.39%</td>
</tr>
<tr>
<td>All dwellings</td>
<td>26.59%</td>
<td>37.29%</td>
<td>19.97%</td>
<td>6.80%</td>
<td>9.35%</td>
</tr>
</tbody>
</table>
Tackling Fuel Poverty

5.30 A key issue in reducing energy consumption is tackling fuel poverty. Not only do dwellings where fuel poverty exists represent dwellings with poor energy efficiency, they are, by definition, occupied by residents with low incomes least likely to be able to afford improvements.

5.31 The Low Income High Costs (LIHC) definition of fuel poverty was adopted by the government in 2013. Under the LIHC definition, a household is considered to be fuel poor if:

» Its required fuel costs are above the median level;

» Spending this amount on fuel costs would leave the household with a residual income below the official poverty line.

5.32 For each individual dwelling surveyed the energy efficiency software not only calculates the SAP rating and CO₂ emissions for a dwelling, but also the cost of heating that dwelling per annum. This cost is based on the standard model of heating the dwelling to 21 degrees Celsius in the main living rooms and 18 degrees Celsius in bedrooms and other rooms, over the course of a year. In addition, for each individual dwelling, household income is recorded along with other information about the dwelling and its occupants. It is therefore possible, for each individual dwelling surveyed, to determine whether the household living there is in fuel poverty.

5.33 Using the LIHC definition and excluding social housing stock, overall the results show that 15.9% of households are in fuel poverty in the study area. This will present issues in terms of both energy efficiency and occupier health. Splitting the data up by tenure reveals that 13.2% of owner occupied households and 18.7% of privately rented households in the study are in fuel poverty. Examining the HMOs in particular, 27.2% of HMO based households suffer fuel poverty, of whom almost 9 out of 10 (88.9%) are based in S257 HMOs.

5.34 Furthermore, the results also indicate that the vast majority (78%) of fuel poverty cases in the study area are households with an income below £14,000 per annum, with a third of cases (33.2%) having a head of household aged 65 or above. In short, fuel poverty tends to be an issue for the poorest and oldest households.

5.35 It is also likely that, in some cases, energy efficiency improvements alone would be insufficient to remove the household from fuel poverty. This is due to a phenomenon known as ‘perpetual fuel poverty’ where the household’s income is simply not high enough to enable adequately heating of the dwelling under any circumstances.
Chapter 5 Summary - Energy Performance

SAP rating

» Around half of private sector dwellings (48.4%) are in SAP Band D (55-68). The average SAP rating for the study area is 58, compared with 60 nationally.

» Slightly less than a quarter (24.8%) of private sector dwellings in the study area fall in bands A-C. 11.2% are in the lowest bands, F and G.

» The average rating in Castle (53) is lower than in other parts of the borough (all except Braybrooke [55] are 58 or above), and the average rating for dwellings pre-dating 1919 (56) is also lower than the overall average (58).

Fuel type

» Around 16,460 dwellings use mains gas as their primary fuel type, which equates to approximately 81% of all dwellings.

Heating Type

» 80% of dwellings have a central heating system. Most types of house (the exception being small terraced properties) all show relatively high rates of installed central heating. These dwellings have a strong association with the owner-occupied sector and higher use of mains gas. Flats show a higher incidence of storage heating systems than other properties.

Loft Insulation

» While only a tiny proportion of dwellings (3.8%) have uninsulated lofts, only 8.9% have at least 250mm of insulation (the recommended depth is 270mm).

PV Panels

» 300 properties are estimated as having PV panels, with the majority being in owner occupied homes. 400 properties are estimated as having solar water heating with the majority also being in owner occupied properties.

Heating Costs

» Over a third of households spend between £600 and £900 per year on fuel costs, and costs are typically higher for households living in older and larger properties.

Fuel Poverty

» According to the ‘Low Income, High Costs’ definition, the occupiers of a dwelling are considered to be in fuel poverty if their required fuel costs are above the median level, and spending this amount would leave them with a residual income below the poverty line.

» Based on this definition, 15.9% of households in the study area contain are in fuel poverty.
6. The Private Rented Sector
Policy background and survey findings

6.1 This chapter describes changes in the private rented sector (PRS) in recent years, both nationally and in relation to the study area. It also contains a summary of findings from the stock condition survey relating to the private rented dwellings in the study area.

Background

6.2 The English Housing Survey 2013-14\(^4\) identified that 19% of households (4.4 million) were renting from a private landlord, up from 18% in 2012-13 and 11% in 2003. Households aged 25-34 were more likely to be renting privately (48%) than buying a home, up from 45% in 2012-13 and 21% in 2003-04. Owner occupation in this age group dropped from 59% to 36% over the same 10 year period.

6.3 The growth of the Sector has been acknowledged as both a growing and long term option for meeting the nation’s housing need. The Government published “Improving the Private Rented Sector and Tackling Bad Practice: A guide for local authorities” in March 2015\(^5\), and the Foreword by the Minister stated:

“The private rented sector is an important and growing part of our housing market, housing 4.4 million households in England. The quality of housing in the sector has improved dramatically over the last decade. It is now the second largest tenure and this growth is forecast to continue growing. I am proud of this growth as it shows increasing choice, improving standards whilst helping to keep rents affordable. The Government supports a bigger and better private rented sector and wants to see this growth continue.”

6.4 Importantly, the Government sees the PRS having an important and long term role in meeting the housing need of the nation; and although the National Planning Policy Framework (NPPF) and Planning Practice Guidance (PPG) do not mention the current or future role of housing benefit, the policy to support low-income households in the private rented sector with housing benefit is long-standing and is explicitly factored into the long-term forecasts for public spending. Nevertheless, policy is focused on improving Management and Maintenance in the sector (via licensing or self-regulation schemes) and expanding supply\(^6\) (including the Build to Rent investment scheme\(^7\)).

6.5 Given this context, it is important for local authorities to recognise the role of the private rented sector at a local level. Assuming the release back into the market of many dwellings in the private rented sector currently occupied by tenants in receipt of housing benefit would have significant consequences; therefore it remains appropriate to recognise that the private rented sector will continue to make an important contribution towards providing housing options for households unable to afford their

\(^7\) https://www.gov.uk/government/publications/build-to-rent-round-2-initial-due-diligence
housing costs in future. Nevertheless, it is essential for local authorities to understand the full extent of the need for affordable housing in their areas and consider their policy responses accordingly.

The current private rented sector and the role of housing benefit

6.6 Many households in both the social and private rented sectors are able to claim support with rent costs in the form of housing benefit. The Department of Work and Pensions (DWP) publish quarterly statistics for housing benefit recipients.

6.7 In recent years housing benefit support in the private rented sector has increased as a tool used to help meet housing need. In May 2015, over 4,600 households in the study area received housing benefit support to live in the private rented sector.

6.8 Figure 51 shows that 21% of households in the study area claim housing benefit while living in the private rented sector, and that this figure is high in comparison with the South East of England where the average figure is 6.7%, and is also significantly higher than the average of the other Hastings wards (8%). The figure is obtained by dividing the number of housing benefit claims in the private rented sector by the total dwelling stock of the area. This may overstate the number of dwellings occupied because some dwellings will have more than one claimant household within them.

Figure 51: Housing Benefit in Private Rented Sector as a Share of Total Dwellings by Hastings Wards and Wider Geographies 2015 (Source: CLG Live Table 100 March 2015; DWP)
Overcrowding

6.9 The English Housing Survey (EHS) does not provide information about individual local authorities, but it does provide a useful context about these indicators in terms of national trends between Census years.

6.10 The measure of overcrowding used by the EHS provides a consistent measure over time however the definition differs from both occupancy ratings provided by the Census. The EHS approach is based on a “bedroom standard” which assumes that adolescents aged 10-20 of the same sex will share a bedroom, and only those aged 21 or over are assumed to require a separate bedroom (whereas the approach used by the ONS for the Census assumes a separate room for those aged 16 or over):

“The ‘bedroom standard’ is used as an indicator of occupation density. A standard number of bedrooms is calculated for each household in accordance with its age/sex/marital status composition and the relationship of the members to one another. A separate bedroom is allowed for each married or cohabiting couple, any other person aged 21 or over, each pair of adolescents aged 10-20 of the same sex, and each pair of children under 10. Any unpaired person aged 10-20 is notionally paired, if possible, with a child under 10 of the same sex, or, if that is not possible, he or she is counted as requiring a separate bedroom, as is any unpaired child under 10.

“Households are said to be overcrowded if they have fewer bedrooms available than the notional number needed. Households are said to be under-occupying if they have two or more bedrooms more than the notional needed.”

6.11 Nationally, overcrowding rates have increased for households in both social and private rented housing since 1995, although the proportion of overcrowded households has declined in both sectors since 2011. Overcrowding rates for owner occupiers have remained relatively stable since 1995.

Figure 52: Trend in overcrowding rates for England by tenure (Note: Based on three-year moving average, up to and including the labelled date. Source: Survey of English Housing 1995-96 to 2007-08; English Housing Survey 2008-09 onwards)

6.12 Whilst the EHS definition of overcrowding is more stringent than the Census, the measurement more closely reflects the definition of statutory overcrowding that was set out by Part X of the Housing Act 1985 and is consistent with statutory Guidance that was issued by CLG in 2012 to which authorities must have regard when exercising their functions under Part 6 of the 1996 Housing Act (as amended).

6.13 This Guidance, “Allocation of accommodation: Guidance for local housing authorities in England”, recommends that authorities should use the bedroom standard when assessing whether or not households are overcrowded for the purposes of assessing housing need:

“4.8 The Secretary of State takes the view that the bedroom standard is an appropriate measure of overcrowding for allocation purposes, and recommends that all housing authorities should adopt this as a minimum. The bedroom standard allocates a separate bedroom to each:

- married or cohabiting couple
- adult aged 21 years or more
- pair of adolescents aged 10-20 years of the same sex
- pair of children aged under 10 years regardless of sex”

6.14 The Census also provides detailed information about occupancy which provides a measure of whether a household’s accommodation is overcrowded or under occupied:

6.15 “There are two measures of occupancy rating, one based on the number of rooms in a household's accommodation, and one based on the number of bedrooms. The ages of the household members and their relationships to each other are used to derive the number of rooms/bedrooms they require, based on a standard formula. The number of rooms/bedrooms required is subtracted from the number of rooms/bedrooms in the household's accommodation to obtain the occupancy rating. An occupancy rating of -1 implies that a household has one fewer room/bedroom than required, whereas +1 implies that they have one more room/bedroom than the standard requirement.” - ONS

6.16 Overcrowding across all household types has fallen across all tenures between Census 2001 and 2011. We would note that both the 2001 and 2011 Census contain a measure of overcrowding reflected by room occupancy. However, we also note that a feature of the ONS calculation of overcrowding by room occupancy is that households classed as living in overcrowded housing include all individuals (and any other households) living in studio flats, and all couples (and any larger households) living in a one-bedroom flat with a combined lounge-kitchen-diner. The room occupancy measure has the benefit of allowing a consistent comparison between the 2001 and 2011 Census, but ORS’ preference is to use the bedroom occupancy measure introduced in the 2011 Census (see below).

6.17 For the study area, overcrowding in the private rent sector increased by 848 households between 2001 and 2011. Due to the large increase in the number of dwellings used for private rent in the intervening decade; this increase corresponded to a net change of only 2.7%. Note that in the owner occupied sector the number reduced, yet the percentage increases. This is because there are fewer owner occupied properties in the study area (possibly due to their conversion to rental properties) and so the 415 in 2011 represents a higher proportion (0.4% higher) of total owner occupied stock than did the 420 in 2001.
6.18 The levels of overcrowding in the private sector when measured by the bedroom standard indicate that the level of overcrowding is 2.8% in the private rented sector, lower than the average for England, and lower than the rate for social rented housing in the study area (Figure 53).

Figure 53: Overcrowding levels in the study area (by room and bedroom) 2001-2011. (Note: Overcrowded households are considered to have an occupancy rating of -1 or less. Source: UK Census of Population 2001 and 2011)

<table>
<thead>
<tr>
<th>Study Area</th>
<th>Occupancy rating (rooms)</th>
<th>Occupancy rating (bedrooms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study Area</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Owned</td>
<td>420</td>
<td>415</td>
</tr>
<tr>
<td>Private rented</td>
<td>1030</td>
<td>1878</td>
</tr>
<tr>
<td>Social rented</td>
<td>311</td>
<td>425</td>
</tr>
<tr>
<td>All Households</td>
<td>1,761</td>
<td>2,718</td>
</tr>
<tr>
<td>England</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Chapter 6 Summary - Private rented sector

The summary below brings together some of the main findings from elsewhere in this report that concern the private rented sector.

Profile

» Over three quarters (78%) of privately rented dwellings in the study area were built before 1919.
» Over half of privately rented dwellings (57%) are converted flats, and a further fifth (20%) are purpose built flats.
» 36% of privately renting households have been at their address for less than 2 years, and 64% have been at their address for less than 5 years.

Overcrowding

» Overcrowding has increased by 848 households in the private rental sector over a 10 year period from 2001 to 2011 (by the room standard). However, due to the increase in the size of the sector, the overall proportion overcrowded in the private rented sector has only increased by 2.7%.

Decent Homes Standard (including Category 1 hazards) and remedial costs

» 13.9% of privately rented dwellings in the study area have a Category 1 hazard, with Excess Cold (9.7%) and Falls on Stairs (4%) being the most common types of hazard.
» 31.4% of privately rented dwellings fail the Decent Homes Standard. The most common reason for failure is being in need of repair (56.7% of non-decent privately rented stock), while 43.2% of failures are due to thermal comfort and 44.1% of non-decent privately rented stock fail due to a Category 1 hazard. Note that properties may fail on more than one criterion, hence these figures do not sum to 100%.
» Total remedial costs for privately rented dwellings are estimated at around £20.8 million, equating to approximately £4,250 per dwelling.

Energy performance

» Privately rented dwellings in the study area have an average SAP rating of 58 (Bands D), the same average rating as for owner occupied dwellings.
» 86.6% of privately rented dwellings have a central heating system, compared with 73.8% of owner occupied dwellings.
7. Conclusions
Summary of findings and policy implications

Introduction
7.1 This chapter draws together the key findings of the private sector housing stock condition survey. It sets out these findings in the context of the national position and highlights areas of substantial difference. It then seeks to identify the policy implications of these findings in the context of current legislation, obligations on the Local Authority and good practice. The key pieces of legislation driving private sector housing policy are:

» Regulatory Reform (Housing Assistance) (England and Wales) Order 2002 (RRO)
» Part 2 of the Housing Act 2004
» Part 1 Section 3 of the Housing Act 2004
» Part 4 of the Housing Act 2004
» The Housing and Planning Act 2016

Summary of Findings
7.2 The following draws together the summary of findings at the end of each chapter of the survey report and gives a comprehensive overview of private sector dwellings in the study area.

Summary
Chapter 2 - General Housing Characteristics
Vacant dwellings
» There are approximately 910 vacant dwellings in the study area, which is around 4.5% of the total dwelling stock. 580 of these (2.9% of the overall stock) are long-term vacant.

Tenure
» The HSCS data shows that, of the dwellings that are in scope for the study (i.e. private sector dwellings only), 50% of dwellings are owner occupied and 50% are privately rented. This proportion of owner occupiers is similar to household data from Census (51%) but significantly less than the proportion of owner occupiers in England as a whole (76%).

Houses in Multiple Occupation
» In the private sector of the study area, there are around 720 buildings that are S257 Non-Compliant HMOs, containing 2,690 dwelling spaces; and a further 400 other HMOs.
Property Age

» 71% of dwellings in the area were constructed before 1919 which is much higher than England as a whole (23%). Only 15% of dwellings are dated Post 1965 which is significantly lower than the figure for England (43%)

» The age profile for privately rented dwellings is generally older than that for owner occupation. However there was a greater proportion of private rented dwellings constructed Pre 1919 than that of owner occupiers.

Property Type

» Compared to England as a whole, the study area has proportionally ten times more converted flats, and also more purpose built flats and medium/large terraced houses. There is a far smaller proportion of other types of house (small terraced, semi-detached, detached, bungalow).

Property Size

» The study area has a higher proportion of small dwellings compared to England as a whole. Owner occupied dwellings are likely to have more living space than privately rented dwellings and this is consistent with the tenure breakdown of dwelling type (with detached/semi-detached dwellings, medium/large terraced houses and bungalows being more prevalent in the owner occupied sector).

Property Construction

» 28% of dwellings in the study area have cavity walls, while 55% have solid walls (the remaining 17% is a mixture of purpose built flats and other build types).

» While solid walled dwellings are more prevalent in the private rented sector (reflecting the strong association in the study area between this tenure and older properties), there is a mixture of build types in both the main tenure groups.

Tenure Length

» While 57% of owner occupiers have lived in their home for ten years or more, only 15% of private renters have lived in their home for this period of time.

» Overall, the proportion of households that have been resident for less than two years is 24%, although this rises to 36% if looking only at the private rented sector.

Limiting Long Term Illness

» There are approximately 4,890 households with at least household member with a long-term limiting illness or disability (24%).
Chapter 3 - Statutory Minimum Standards

Category 1 Hazards by Number and Type

» The overall proportion of private sector dwellings with a Category 1 hazard in the study area is 12.1%, which equates to around 2,450 dwellings.

» 231 dwellings (1.1%) have two Category 1 hazards and around 208 dwellings (1%) have three or more Category 1 hazards identified.

» The most prominent Category 1 hazards are excess cold and falls on stairs (8.9% and 3% respectively).

Category 1 Hazard by Location

» The incidence of Category 1 hazards in Castle (29.7%) is the highest in the study area. Also above the overall average are Tressell (15.3%) and Braybrooke (14.7%).

Category 1 Hazard by Tenure

» Private rented stock has a higher rate of Category 1 hazards (13.9%) than owner occupation (10.2%).

» Excess cold is the most common reason for failure for both tenure types, followed by falls on stairs.

Category 1 Hazard and Property Age

» Pre-1919 (14.4%) and 1965-1980 (12.8%) properties are more likely to have a Category 1 hazard than properties built between 1919 and 1965. In those constructed since 1981, the rate of failure is negligible.

Category 1 Hazard and Property Type

» Small terraced houses and converted flats have the highest incidence of Category 1 hazard (13.6% and 14.3% respectively). Detached houses have the lowest incidence of Category 1 hazards (2.3%).

Summary

Chapter 4 – Decent Homes Standard
Decent Homes – Category 1 hazards

» Category 1 hazards affect around 2,450 private sector properties in the study area (12.1%).

» The incidence of Category 1 hazards is higher in private rented dwellings (13.9%) relative to owner occupied dwellings (10.2%).

Decent Homes - Disrepair

» Dwelling disrepair affects around 2,320 properties in the study area which is approximately 11.4% of all private sector dwellings.

» The failure rate for disrepair is significantly higher for privately rented dwellings (17.8%) than for owner occupied dwellings (4.8%).

Decent Homes – Lacking Modern Facilities

» Overall, only 300 dwellings failed the Decent Homes Standard on lacking modern facilities.

Decent Homes - Thermal Comfort

» 2,680 dwellings in the study area have a thermal comfort failure equating to around 13.2% of the dwelling stock.

» Privately rented dwellings have a slightly higher rate of failure compared with owner occupied dwellings.

Decent Homes - Overall

» The Survey estimates that around 5,200 dwellings in the study area fail the Decent Homes Standard and this is approximately 25.7% of all private sector dwellings. 1,302 dwellings (6.5%) fail on two criteria and around 533 dwellings (2.6%) fail on three or more criteria.

» Within the study area; the most common reason for failure is having a poor degree of thermal comfort.

Decent Homes - Location

» Castle has the highest rate of non-decency of the studied wards (41.5%). Next highest were Central St Leonards and Braybrooke (both with 26.4%) with similar levels to the study area average of 25.7%).

Decent Homes - Tenure

» Privately rented dwellings show higher rates of non-decency (31.4%) compared with those that are owner occupied (19.7%).

Decent Homes – Property age

» The highest levels of non-decency are found in properties built pre 1919 followed by those between 1919 and 1944. The lowest levels are found in properties built between 1981 and 1990.

Decent Homes – Costs to remedy

» The highest levels of non-decency are found in purpose built flats (29.7%), converted flats (28.1%) along with small terraced houses and bungalows (26.9% and 26.6% respectively), while the lowest levels are found in detached houses (13.7%).
The estimated total cost to remedy non-decency in the private housing sector is £27.6 million, with an average cost per dwelling of £3,560.

Summary

Chapter 5 - Energy Performance

SAP rating

» Around half of private sector dwellings (48.4%) are in SAP Band D (55-68). The average SAP rating for the study area is 58, compared with 60 nationally.

» Slightly less than a quarter (24.8%) of private sector dwellings in the study area fall in bands A-C. 11.2% are in the lowest bands, F and G.

» The average rating in Castle (53) is lower than in other parts of the borough (all except Braybrooke [55] are 58 or above), and the average rating for dwellings pre-dating 1919 (56) is also lower than the overall average (58).

Fuel type

» Around 16,460 dwellings use mains gas as their primary fuel type, which equates to approximately 81% of all dwellings.

Heating Type

» 80% of dwellings have a central heating system. Most types of house (the exception being small terraced properties) all show relatively high rates of installed central heating. These dwellings have a strong association with the owner-occupied sector and higher use of mains gas. Flats show a higher incidence of storage heating systems than other properties.

Loft Insulation

» While only a tiny proportion of dwellings (3.8%) have uninsulated lofts, only 8.9% have at least 250mm of insulation (the recommended depth is 270mm).

PV Panels

» 300 properties are estimated as having PV panels, with the majority being in owner occupied homes. 400 properties are estimated as having solar water heating with the majority also being in owner occupied properties.

Heating Costs

» Over a third of households spend between £600 and £900 per year on fuel costs, and costs are typically higher for households living in older and larger properties.

Fuel Poverty

» According to the ‘Low Income, High Costs’ definition, the occupiers of a dwelling are considered to be in fuel poverty if their required fuel costs are above the median level, and spending this amount would leave them with a residual income below the poverty line.
Based on this definition, 15.9% of occupied dwellings in the study area contain a household which is in fuel poverty.
Policy Focus

7.3 Based on the detailed findings of the survey report the following section of this chapter outlines key policy recommendations specific to the seven wards forming the study area.

The expansion of the private rented sector

7.4 The private rented sector in the study area has expanded over the past ten years, a market feature similar to that for England. Demand has been strong and landlords have been keen to enter the market given its returns in comparison with other investment options.

7.5 Nationally, demand for affordable homes exceeds supply, while access to owner occupation is constrained from a combination of property values, incomes and mortgage availability. Housing supply is relatively low, while household formation rates continue to rise. For households who can neither access owner occupation nor affordable homes, the private rented sector offers an alternative; the rapid rise in the relative size of the tenure demonstrates this. While new market or affordable housing supply may improve in the long term, in the short term demand for private renting seems likely to remain or increase.

7.6 Importantly, the private rented sector is meeting housing need, largely from newly forming households who can neither access owner occupation nor social housing. Such households often rely on housing benefit support to maintain their tenancy; this is currently subject to considerable reform. Although the long term implications of reform are not yet known, emerging evidence indicates households are already exhibiting strain from the changes. Further, private rented sector landlords are also responding; for example, by not letting to households who receive housing benefit, or by converting more family homes into HMOs.

7.7 Looking forward, while the government is seeking to reverse trends through polices such as Starter Homes, the private rented sector seems likely to continue to increase its market share across the country, largely via conversion of existing stock.

Future demands in relation to the private rented sector

7.8 For the Council, the growth in the private rented sector indicates a continuing (and potentially increasing) demand upon resources. Generally, it is likely that most of the private rented sector is well-managed, albeit there are still areas to address in terms of routine maintenance, responding to problems, giving notice before entering, and the rent deposit scheme backed by Government.

7.9 The Survey identified a proportion of non-decent homes in the private rented sector in the study area. Whilst there has been a steady improvement in areas such as energy efficiency; the overall condition of the fabric of dwellings and the issues around amenity provision, fire risk and the operation of private rented dwellings by landlords still have issues to address.

7.10 Landlord yields are, arguably, currently constrained by relatively static values, with rents in Hastings showing little sign of rapid rise (median rent Hastings in 2016 has increased by only 11% from 2011, compared to 13% nationally. Source - VOA). Therefore, although finance availability for improvements is slowly becoming more available, landlords may perceive that this unserviceable from existing yields. This may combine to reduce the extent to which landlords are able to maintain or improve their
dwellings. This may, in turn, lead to an increase in complaints from tenants and more enforcement action by the local authority. A growing sector may add to this demand.

7.11 Given this context, it is recommended that the Council continue to monitor the level of resource needed to engage effectively with the private rented sector in order to improve property condition and management. At the same time, the Council should consider the areas to address in the management of the Private Rented Sector around repairs.

Fire risk

7.12 Issues were discovered around levels of fire prevention measures in HMOs, and in some respects to an even greater extent in self-contained flats.

7.13 Given that shared house HMOs have an enhanced fire risk compared to a typical dwelling, and given the low provision of fire safety in these dwellings, a policy to address fire safety in these dwellings is advisable. Hastings Borough Council currently has a policy applicable to the study area, which covers fire safety as well as programmed HMO inspections.

7.14 The majority of key fire safety measures (mains smoke detectors, fire extinguishers, fire blankets, fire notices and to a lesser extent fire doors) are inexpensive items that landlords should be able to afford and thus it is not recommended that any form of financial assistance be offered in relation to the installation of these items. Provision of automatic fire alarms, emergency lighting and fire proof doors are obligatory in licensable HMOs and enforcement action should be implemented for non-compliant landlords unwilling to fit these measures to their properties. This represents a significant proportion of HMOs in the study area; as the survey estimates that 49.6% of HMOs do not have mains powered smoke detectors and 56% do not have self-closing fire doors.

Bringing empty properties back into use

7.15 There are an estimated 580 long term private sector vacant dwellings in the study area – that is dwellings that have been vacant for over six months. There are also many reasons why a property may be vacant long term (for example, probate cases can typically take more than six months to resolve).

7.16 In extreme cases, where owners will not bring a dwelling back into use or cannot be identified, the Council has the option to use an Empty Dwelling Management Order (EDMO), but this can be expensive and the property must have been vacant for 2 years. Typically those dwellings that have been taken over in this way are either sold on or are managed by an RP in order to bring them back into use.

7.17 Councils often rely on Council Tax records to identify long term vacant dwellings and these can be problematic. This is due to a wide range of reasons, but principally due to lack of accurate information and change of circumstances being put forward by property owners. Therefore, Hastings could seek to improve the links between its Council Tax and housing teams to ensure consistent action is taken.

7.18 One scheme to note is the ‘No Use Empty’ scheme in Kent (an interest free loan scheme for owners), launched in 2005 (now also adopted in Bristol) which has now brought 1,500 properties back in to use. The first stage of this scheme was to visit all empties listed under Council Tax across the Borough to identify their true status, which discovered that more than 50% were not actually vacant. Initially, the scheme needed a £6m investment to set up the interest free loan scheme although the scheme is now self-sustaining at no additional cost to the tax-payer.
7.19 Hastings also have the option to purchase empty homes from their owners and seek to bring them back in to use. This is a scheme which many Registered Providers are currently exploring across the country to seek to boost the scale of affordable housing in an area, but it is clearly expensive to buy and renovate properties.

7.20 If the council were able to reduce the number of long-term empty properties in the area they would benefit from the New Homes Bonus. This scheme treats reducing long-term empty homes as being the equivalent of building new dwellings. However, the council would only benefit on a net, not a gross basis, so the overall number of long-term empty homes must fall.

Vulnerable Occupiers in the Private sector

7.21 Disabled Facilities Grants (DFG) remain the only mandatory grant relating to private sector housing. They require a test of financial resources in a prescribed format unless the case involves children, and the maximum grant is £30,000. The eligible work is set out in sec 23 (1) of the Housing Grants Construction and Regeneration Act 1996, and eligible dwellings include mobile homes and houseboats. The DFG may be recoverable on the sale of the property and any specialised equipment which is provided by way of grant aid (e.g. stair lifts) can be recovered and reused at local authority expense. However, this is dependent upon the circumstances of the case.

7.22 The Better Care Fund (BCF) was announced in June 2013 to drive transformation of local services to ensure that people receive better and more integrated care and support. Disabled Facilities Grant funding has been included within the BCF to encourage local authorities to take a joined-up approach to improving outcomes across health, housing and social care. An increase in funding gives local authorities the opportunity to work differently and seek to offer other types of assistance.

7.23 Section 3 of the 2004 Housing Act requires local authorities to monitor the housing conditions in their district with a view to determining what action to take under the Act. In contemplating how best to do so, together with pressures on budgets and resources, the Council may wish to consider how to target any support it can give.

7.24 This may include a targeted approach based on tackling non-decent where such non-decent is caused by a Category 1 hazard. A further targeting could be applied via making support available to those on low incomes and/or those who are the most vulnerable (older occupiers and residents with a disability).

7.25 It is notable that while the level of non-decent in the owner occupied sector is lower than that in the private rented sector it still represents over 21.7% of all owner occupied dwellings, and loan schemes based on a charge against the property might also be a solution to funding dwelling repair and improvement work for owner occupiers.

Energy Efficiency Improvements

7.26 Energy efficiency levels in the study area are below the national average, although this position is made up of dwellings with a variety of energy efficiencies.

7.27 Improving energy efficiency and reducing carbon emissions has been a key aim of governments for nearly two decades. One now historic scheme was Warm Front which offered a range of insulation measures to home-owners and some limited heating options. Warm Front was replaced by the Energy
Company Obligation (ECO) in 2013 (part of the Government’s ‘Green Deal’) and part of the ECO scheme is the Home Heating Cost Reduction Obligation (HHCRO) scheme, which provides grant-assisted cavity wall and loft insulation measures for people on certain benefits. However, only a small number of properties in the study area are likely to benefit from this scheme. ECO is a significant initiative with the potential to deliver considerable investment in energy efficiency. Key to these initiatives is an aim of no up-front costs where the cost of works will be recouped in instalments on customers’ energy bills. The intention is that these instalments will be off-set by the reduced energy costs stemming from the energy efficiency measures.

7.28 In the study area context, many homes already have loft insulation (although the HSCS findings suggest that fewer than 10% of homes have close to or more than the 270mm recommended depth). Moreover, the high proportion of solid walled dwellings in the borough means that cavity wall insulation will not be appropriate in many cases. In addition, there appears to be a limited desire from energy companies to promote solid wall insulation measures, due to the relatively unattractive cost to benefit ratio.

Tackling Fuel Poverty

7.29 Fuel Poverty is described in chapter 5 of the report. Where dwellings do not have mains gas a central heating system running on LPG or oil are the most cost effective options unless other fuels (such as wood) can be procured locally at well below market prices. Replacement of open fires with kitchen ranges that have back boilers or a solid fuel heating system that has a boiler and radiator component will reduce costs and/or more effectively heat the dwelling reducing the health risks associated with fuel poverty. There are additional options in more rural areas to install air source heat pumps, or where land space permits, ground source heat pumps. Solar water heating and photo-voltaic cells can also help to reduce general fuel costs.

7.30 Fuel poverty is particularly acute for households with a disabled resident and for households where the occupiers are aged 75 or over and there is a significant overlap between these two groups. These vulnerable occupiers are also the most likely to suffer as a result of fuel poverty with excess winter deaths (one of the key issues highlighted by fuel poverty). The Council should, therefore, consider:

» Seek to maximise ECO investment, targeting fuel poor households wherever possible.

» Work closely with other departments and voluntary organisations (such as charities): by ensuring all agencies who might come into contact with vulnerable occupiers are aware of the schemes available, they can pass on contacts to the Council to offer assistance with taking up these schemes.

7.31 One fundamental issue with fuel poverty at present is fuel prices. Energy efficiency improvements have reduced the extent to which households will be in fuel poverty, however, this is more than off-set by high fuel prices. A phenomenon of perpetual fuel poverty is now beginning to arise nationally and is likely to affect the study area. This is where a household remains in fuel poverty even after all energy efficiency works have been carried out, simply because their income is not high enough to heat the dwelling under any circumstances. This issue can only be resolved through a sharp decrease in fuel prices, a large increase in household income or through subsidy. It will be un-economic for the Council to subsidise household fuel payments, so options appear to be limited.

7.32 Looking further ahead, a report released in March 2016 by the Competition and Markets Authority (CMA) contained a series of proposals designed to reform the energy market and help consumers save
One of the many proposed measures is to cap prices for those using pre-payment meters – a group which tends to include poorer and more vulnerable customers. A period of consultation is to follow the publication of this report. If any of its recommendations are ultimately accepted and implemented, this may have implications for energy costs and levels of fuel poverty of the study area in the future.

The Government has also announced changes to the Energy Bill to include a new law introducing a legal minimum energy efficiency standard for homes rented from a landlord from 2018. A trend based estimate based on the 2016 HSCS places the total cost of achieving this in the study area at £6.5 million. However, it is worth noting that the HSCS already estimates a total cost of £6.7 million to remedy Category 1 hazards in the private rented sector. As 70% of these properties with Category 1 hazards have an issue with Excess Cold, there would be a considerable overlap between these improvement costs. If all Category 1 hazards were remedied in the private rented sector, it is estimated that around £1.6 million of further spending would be required to improve the stock to Band E standard (460 more homes at an average of £3,500 each).

A further option available to the council would be to seek amelioration of fuel poverty by utilising additional DFG funding through a more joined up allocation process.

9 https://www.gov.uk/cma-cases/energy-market-investigation
Long term Progress

In 2007 a Private Sector House Condition Survey was produced for Hastings Borough Council by CPC. It divided Hastings as a whole into four broad areas, and surveyed properties in those four areas to produce a report on stock condition in these areas. In terms of seeing how much progress has been made, this survey represents the best available data from the time. Since 2007, Hastings Borough Council have attempted improvement on the most poorest stock through renewal programmes and investment. Much of this has focused on the wards in the study area; and especially that of Central St Leonards.

The 2007 report and this report do not have the same study areas and so cannot be directly compared with absolute confidence. However, there is a close match between the region described in the 2007 report as “Central St Leonards” (in fact a region incorporating Central St Leonards, the majority of Gensing and a small part of Maze Hill) and the 2016 survey of the wards of Central St Leonards and Gensing. With the express understanding that they are not the exact same area and so cannot be directly compared; an indication of progress made in the region in terms of HHSRS hazards and SAP ratings can be inferred:

Figure 54: Category 1 Hazards by area (Source: Private Sector House Condition Survey 2007, HSCS 2016)

In terms of category 1 HHSRS hazards, there has been significant progress made. Previously in 2007 around one in three private dwellings had a category 1 hazard, in 2016 that proportion is closer to one in eleven.
In terms of the prevalence of non-decency, similar progress is apparent. Previously in 2007 over three fifths of dwellings failed the decent homes standard. In 2016, that proportion is close to one fifth.

Average SAP ratings have also increased a great deal. Previously in 2007 the average SAP rating was 40 (the lower end of Band E), whereas in 2016 the average SAP rating had increased to 60 (mid Band D).

As mentioned before; the areas of the two studies are not exactly the same. However this cursory comparison indicates that a great deal of improvement has been in the condition of private sector properties in the Central St Leonards and Gensing wards.
Appendix A
Housing Legislation and Requirements

Housing Acts and other Legislation

Section 605 of the Housing Act 1985 (as amended) placed a duty on local authorities to consider the condition of the stock within their area, in terms of their statutory responsibilities to deal with unfit housing, and to provide assistance with housing renewal. Section 3 of the Housing Act 2004 replaced this with a similar duty to keep housing conditions under review.

The Regulatory Reform (Housing Assistance) (England and Wales) Order 2002 came into effect on the 19 July 2003 and led to major change in the way local authorities can give financial help for people to repair or improve private sector homes. Before the Order, the Government set clear rules which controlled the way financial help could be given and specified the types of grant which could be offered. The Order set aside most of these rules (apart from the requirement to give mandatory Disabled Facility Grants). It now allows Local Authorities to adopt a flexible approach, using discretion to set up their own framework for giving financial assistance to reflect local circumstances, needs and resources.

The Office of the Deputy Prime Minister (ODPM), published guidance under Circular 05/2003. In order to use the new freedom, a local authority must prepare and publish a Private Sector Renewal Policy. The policy must show that the new framework for financial assistance is consistent with national, regional and local policies. In particular, it has to show that the local priorities the strategy is seeking to address have been identified from evidence of local housing conditions including stock condition.

The Housing Act 2004 received Royal Assent in November 2004. The Act makes a number of important changes to the statutory framework for private sector housing, which came into effect in April 2006:

- The previous fitness standard and the enforcement system have been replaced by the new Housing Health and Safety Rating System (HHSRS).
- The compulsory licensing of higher risk houses in multiple occupation (HMO) (three or more storeys, five or more tenants and two or more households).
- New discretionary powers including the option for selective licensing of private landlords, empty dwelling management orders and tenancy deposit protection.

Operating Guidance was published on the Housing Health and Safety Rating System in February 2006. This guidance describes the new system and the methods for measurement of hazards, as well as the division of Category 1 and 2 hazards. Guidance has been issued by the ODPM on the licensing provisions for HMOs, which describes the high risk HMOs that require mandatory licensing and those that fall under additional, voluntary licensing.

As the Rating System has now replaced the fitness standard, this report deals with findings based on statutory hazards, not unfitness.
The Housing Act 2004 was updated and amended as part of the Housing and Planning Act 2016 which received royal assent in May 2016. However, the amendments do not have any major impact on the regulatory powers available to local authorities with the exception of changes relating to rights to prosecute private landlords.

Mandatory Duties

Unfit houses (Housing Act 1985) - to take the most satisfactory course of action – works to make property fit, closure/demolition or clearance declaration.

With effect from April 2006 replaced by:

Category 1 hazards, Housing Health and Safety Rating System (HHSRS) (Housing Act 2004) – to take the most satisfactory course of action – improvement notices, prohibition orders, hazard awareness notices, emergency remedial action, emergency prohibition orders, demolition orders or slum clearance declaration.

Houses in Multiple Occupation (Housing Act 1985) - to inspect certain HMOs, to keep a register of notices served, to require registration where a registration scheme is in force.

With effect from April 2006 replaced by:

HMO Licensing by the Authority (Housing Act 2004) of all HMOs of three or more storeys, with five or more residents and two or more households. Certain exceptions apply and are defined under sections 254 to 259 of the Housing Act 2004.

Note: This qualification for mandatory licensing is currently under review. At the time of writing, the government has recently published its response to the consultation on the proposed changes (Extended mandatory licensing of Houses in Multiple Occupation – a Government Response Document, Nov 2016); and from this it seems likely that the reference to storeys will be removed, thus defining mandatory licenced HMOs as those containing five or more persons and two or more households.

Overcrowding - (Housing Act 1985) - to inspect and report on overcrowding

Now in addition:

Overcrowding – (Housing Act 2004) – to inspect and report on overcrowding as defined under sections 139 to 144 of the Housing Act 2004 along with statutory duty to deal with any Category 1 overcrowding hazards found under the HHSRS.

The provision of adaptations and facilities to meet the needs of people with disabilities (Housing Grants, Construction and Regeneration Act 1996) - to approve applications for Disabled Facilities Grants for facilities and/or access
Energy Conservation (Home Energy Conservation Act 1995) - to have in place a strategy for the promotion and adoption of energy efficiency measures, and to work towards specified Government targets to reduce fossil fuel use. This should contain assessment of:

- The cost of proposed energy conservation measures
- The extent of decreases in nitrogen and sulphur dioxide into the atmosphere
- The extent of decreases in carbon dioxide into the atmosphere
- The number of jobs created from the measures taken

Requirements of authorities under the Act

Under revised Guidance (March 2013) all English authorities need to prepare further reports (by 31 March 2013) setting out the energy conservation measures that the authority considers practicable, cost-effective and likely to result in significant improvement in the energy efficiency of residential accommodation in its area.

Authorities should have regard in their reports to:

(i) measures that take advantage of financial assistance and other benefits offered from central Government initiatives, such as the Green Deal, ECO and Renewable Heat Incentive or other initiatives, to help result in significant energy efficiency improvements of residential accommodation; and

(ii) measures which an authority has developed to implement energy efficiency improvements cost-effectively in residential accommodation by using area based/street by street roll out involving local communities and partnerships (e.g. social housing partners, voluntary organisations and town/parish councils).

Reports should set out any existing timeframe for delivery and national and local partners they propose to work with in effecting such measures to support local accountability.

Progress reports to be made at 2 yearly intervals, starting March 2013, and to publish these electronically on their website with a link to be forwarded to the Secretary of State.
HMO Requirements

The legal minimum standards for Houses in Multiple Occupation (HMOs) are contained in Statutory Instrument 2006 No 373, with amendments contained in Statutory Instrument 2007 No 1903. These standards apply to all HMOs, whether or not they need to be licensed.

The standards set out in Statutory Instrument 2006 No 373, schedule 3 stipulate the following:

- An adequate means of space heating must be provided in each letting and in bathrooms, whether shared or not
- Kitchens and bathrooms must be adequately ventilated, including extractor fans in kitchens
- Kitchens, bathrooms and toilets must be of adequate size and layout and be suitably located in the HMO in relation to the lettings
- All baths, showers, wash hand basins and sinks must be fitted with taps supplying cold water and a constant supply of hot water
- For up to 4 occupiers, there must be at least one bathroom and toilet (which can be in the bathroom). This has been amended by Statutory Instrument 2007 No 1903 to say that there must be an adequate number of bathrooms, toilets and wash hand basins for personal washing for the number of persons sharing those facilities, and where reasonably practicable there must be a wash hand basin with appropriate splash back in each unit.
- For five or more occupiers, there must be at least one bathroom for every 5 sharers, and a separate toilet for every 5 sharers. This has been amended by Statutory Instrument 2007 No 1903 to say that there must be an adequate number of bathrooms, toilets and wash hand basins for personal washing for the number of persons sharing those facilities, and where reasonably practicable there must be a wash hand basin with appropriate splash back in each unit.
- Adequate size and layout kitchen for the number of sharers, containing sinks with draining boards, cooking equipment, worktops, storage cupboards, for food and crockery and utensils, fridge/freezers (combined or separate), and electrical sockets
- Adequate refuse disposal facilities
- Adequate fire precautions including fire doors and fire blankets as appropriate

HMOs should also be assessed against the Housing Health and Safety Rating System and the appropriate enforcement action should be taken, where necessary, to ensure any deficiencies are rectified.

The Management of Houses in Multiple Occupation England 2006 and Licensing and Management of Houses in Multiple Occupation and other houses (miscellaneous provisions) (England) Regulations 2006. Regulation 8 and Schedule 3 govern the following requirements for heating, space, light and ventilation in HMOs.
Heating

The normally accepted standard is a central heating system (preferably gas fired), or fixed heaters (electric heaters should be hard wired, not plugged into the room sockets). Portable electric fires, convector heaters or oil filled radiators, gas cylinder powered heaters or paraffin heaters are not acceptable.

Space

Letting rooms should be not less than 10m² for a single letting, which can be reduced to 7m², if there is a communal lounge. Double rooms should be 15m² and 11m² respectively.

Natural Light and Ventilation

Clear glazing equivalent in area to 10% of the floor area of the room should be provided in each letting. Openable windows equivalent in area to 5% of the floor area of the room should be provided in each letting. Doors to open air cannot be included in the reckoning.

Fire Safety

Fire safety provisions and equipment should be provided as appropriate to the accommodation in line with the domestic fire safety standard.

Fire Alarms

Fire can break out in even the most safety conscious household, and should this happen, toxic smoke can very quickly spread throughout the house. It is most important, therefore to alert the occupants as soon as possible that a fire has broken out in the house. The most effective way of providing this early warning is to fit electrically operated fire detection and alarm systems.

These can range from single, battery operated smoke alarms which are widely available from only a few pounds to quite sophisticated mains operated systems linked to a remote monitoring service who will alert Fire and Rescue should the alarm be actuated in the property. Both the Council and Fire and Rescue recommend a system of smoke and heat alarms which are mains operated and have a battery backup. Smoke alarms must be interlinked, either by physical inter-wiring or by a wireless signal, so that when one alarm detects a fire, all the alarms in the building will sound.

In single family homes and low risk houses in multiple occupation the normal standard would be to provide smoke alarms in the circulation space (hall, stairs and landing) and heat alarms in the kitchen. In most other types of HMO additional alarms are located inside the lettings.

Means of Escape

In all cases there should be a clear escape route from all parts of the house to open air. This is usually the landing, staircase and hallway to the front door. These routes must be kept clear of obstruction and a lockable door should be able to be opened from the inside without using keys. In all but the low risk Houses in Multiple Occupation, doors onto the escape route should be to an approved fire resisting standard. Windows are not accepted as means of escape however ground and first floor windows must be openable to allow exit or access for rescue should the normal escape route not be available.
Landlord Fire Safety Responsibilities

Since the introduction of the 2015 Smoke alarm and Carbon Monoxide Alarm (England) Regulations, most private landlords (there are exceptions to the statutory instrument in cases such as student halls of residence, social landlords, long leases, care homes etc.) are required to fit a smoke alarm on every floor of their property and a carbon monoxide alarm in rooms containing a solid fuels appliance, such as log burners or open fires. The enforcement of these regulations is the responsibility of the local housing authority; and landlords can be fined for failure to comply with the requirements.

Mandatory, Additional and Selective Licensing

The licensing of rental properties is a process whereby the person responsible for the property must apply for a license to rent from the relevant authority. The authority then ensures that the licensee is a “fit and proper person”, and that the property itself is suitable for occupation by the number of tenants proposed. Tenants should have a system to report defects (including responses), periodic inspections should take place, and adequate funding for repairs should be confirmed where necessary (e.g. such as if the landlord is not the manager of the property).

In addition, in the case of HMOs, the license ensures that there is compliance with The Management of Houses in Multiple Occupation (England) Regulations 2006 (note that this legislation applies to all HMOs). These regulations require that the HMO is kept safe (e.g. fire safety provision, gas safety certificates, PAT testing of electrical items), a reasonable state of cleanliness (for common areas) and in an appropriate state of repair.

The Housing Act of 2004 prescribed that any it is mandatory for any HMO meeting all three of the following criteria to be licensed:

1) The property is it is three or more storeys high
2) The property has five or more people in more than one household, and
3) The occupants share amenities such as bathrooms, toilets or cooking facilities.

Exceptions are made in cases where the property is managed by a housing association or other social authority, where the property is wholly in the form of self-contained flats, or where the basement is in commercial use with only two residential storeys above. This legislation therefore broadly covers large HMOs; which government consider high risk. The majority of HMOs in the study area are S257 HMOs and as such are not subject to mandatory licensing since they do not satisfy the above criteria.

Councils have the power to impose licensing on other HMOs not covered by the above. This is known as Additional Licensing and can be introduced if there is an issue with a significant proportion of other types of HMO being poorly managed and giving rise to problems for tenants or the wider neighbourhood. Additional Licensing means that all HMOs in the affected area are required to apply for a license in the same way as the mandatorily licensed large HMOs.

The Housing Act also gives local authorities the power require further classes of property to require licensing, and is an option to be considered to tackle problems such as antisocial behaviour, low demand for rental properties, poor property conditions or high levels of crime, migration or deprivation. This is known as Selective Licensing, and requires almost all private landlords (again there are certain exceptions)
in the designated area to apply for a license. Since 2010, there has been a General Approval for all such schemes, modified in 2015 to being generally approved as long as they encompass less than 20% of the authority, or less than 20% of the private rental market. If either of these criteria are exceeded, the scheme requires confirmation from the Secretary of State. This stipulation is designed to ensure that local authority focus is on problem areas, rather than simply applying licensing to the whole area.

Hastings borough council introduced an Additional Licensing scheme for HMOs in the seven wards of the study area in September 2011, and a Selective Licensing scheme for other rented properties in October 2015.
Appendix B
Survey sampling, fieldwork and weighting the data

The survey used a random sample of dwellings from an address file supplied by Hastings Borough Council. A total of 1,400 addresses were selected at random, and 624 interviews were obtained from the addresses sampled.

All addresses on the original address list were assigned an ID number and a random number generating computer algorithm was used to select the number of addresses specified within the area.

The survey incorporates the substantial majority of housing stock in the study area, including all private sector (owner occupied and privately rented) housing, but excluding social rent.

Each dwelling selected for survey was visited a minimum of three times where access failed and basic dwelling information was gathered including a simple assessment of condition if no survey was ultimately possible. To ensure the sample was not subject to a non-response bias, the condition of the dwellings where access was not achieved was systematically compared with those where the surveyors were successful. Where access was achieved, a full internal inspection was carried out including a detailed energy efficiency survey. In addition to this, where occupied, an interview survey was undertaken and all adult residents were invited to complete a survey about their individual health.

The basic unit of survey was the ‘single self-contained dwelling’. This could comprise a single self-contained house or a self-contained flat. Where more than one flat was present the external part of the building, encompassing the flat and any access-ways serving the flat were also inspected.

The house condition survey form is based on the survey schedule published by the ODPM in the 2000 guidelines (Local House Condition Surveys 2000 HMSO ISBN 0 11 752830 7).

The data was weighted using ORS reporting software. Two approaches to weighting the data have been used.

The first method is used for data such as building age, which has been gathered for all dwellings visited. In this case the weight applied to the individual dwellings is very simple to calculate, as it is the reciprocal of the sample fraction. Thus if 1 in 10 dwellings were selected the sample fraction is 1/10 and the weight applied to each is 10/1.

Where information on individual data items is not always present, i.e. when access fails, then a second approach to weighting the data is taken. This approach is described in detail in the following appendix, but a short description is offered here.

The simplest approach to weighting the data to take account of access failures is to increase the weight given to the dwellings where access is achieved by a proportion corresponding to the access failures. Thus if the sample fraction were 1/10 and 10 dwellings were in a sample the weight applied to any dwelling would be 10/1 which would give a stock total of 100. However, if access were only achieved in 5 dwellings the weight applied is the original 10/1 multiplied by the compensating factor, 10/5. Therefore 10/1 x 10/5...
= 20. As there are only 5 dwellings with information the weight, when applied to five dwellings, still yields the same stock total of 100. The five dwellings with no data are ignored.

There is no evidence to suggest that the access rate has introduced any bias. When externally gathered information (which is present for all dwellings) is examined the stock that was inspected internally is present in similar proportions to those where access was not achieved suggesting no serious bias will have been introduced.

Only those dwellings where a full survey of internal and external elements, energy efficiency, housing health and safety and social questions was completed were used in the production of data for this report. A total of 624 such surveys were produced.

The use of a sample survey to draw conclusions about the stock within the area as a whole introduces some uncertainty. Each figure produced is subject to sampling error, which means the true result will lie between two values, e.g. 5% and 6%. For ease of use, the data are presented as single figures rather than as ranges. A full explanation of these confidence limits is included in the following appendix.

Sample Design

The sample was drawn from the study area address file provided by the Council. The sample was a random sample of addresses in the study area.

Stock Total

The stock total is based initially on the address list; this constitutes the sample frame from which a proportion (the sample) is selected for survey. Any non-dwellings found by the surveyors are marked as such in the sample; these will then be weighted to represent all the non-dwellings that are likely to be in the sample frame. The remaining dwellings surveyed are purely dwellings eligible for survey. These remaining dwellings are then re-weighted according to the original sample fractions and produce a stock total.

In producing the stock total the amount by which the total is adjusted to compensate for addresses that are not residential dwellings is estimated. This is based on the proportion of non-residential addresses found by surveyors in the sample.

Weighting the Data

The original sample was drawn from provided address file. The sample fractions used to create the sample from this list can be converted into weights. If applied to the basic sample these weights would produce a total equal to the original address list. However, before the weights are applied the system takes into account all non-residential and demolished dwellings. This revised sample total is then weighted to produce a total for the whole stock, which will be slightly lower than the original total from which the sample was drawn.

Dealing with Non-response

Where access fails at a dwelling selected for survey the easiest strategy for a surveyor to adopt is to seek access at a neighbouring property. Unfortunately this approach results in large numbers of dwellings
originally selected subsequently being excluded from the survey. These are the dwellings whose occupiers tend to be out all day, i.e. mainly the employed population. The converse of this is that larger numbers of dwellings are selected where the occupiers are at home most of the day, i.e. older persons, the unemployed and families with young children. This tends to bias the results of such surveys as these groups are often on the lowest incomes and where they are owner-occupiers they are not so able to invest in maintaining the fabric of their property.

The methods used in this survey were designed to minimise the effect of access failures. The essential features of this method are; the reduction of access failures to a minimum by repeated calls to dwellings and the use of first impression surveys to adjust the final weights to take account of variations in access rate.

Surveyors were instructed to call on at least three occasions and in many cases they called more often than this. At least one of these calls was to be outside of normal working hours, thus increasing the chance of finding someone at home.

Where access failed this normally resulted in a brief external assessment of the premises. Among the information gathered was the surveyor’s first impression of condition. This is an appraisal of the likely condition of the dwelling based on the first impression the surveyor receives of the dwelling on arrival. It is not subsequently changed after this, whatever conditions are actually discovered.

Where access fails no data is collected on the internal condition of the premises. During data analysis weights are assigned to each dwelling according to the size of sample fraction used to select the individual dwelling.

The final weights given to each dwelling are adjusted slightly to take into account any bias in the type of dwellings accessed. Adjustments to the weights (and only the weights) are made on the basis of the tenure, age and first impression scores from the front-sheet only surveys.

Sampling Error

Results of sample surveys are, for convenience, usually reported as numbers or percentages when in fact the figure reported is at the middle of a range in which the true figure for the population will lie. This is due to the fact that a sample will be subject to error since one dwelling is representing more than one dwelling in the results. The larger the sample, the smaller the error range of the survey and if the sample were the same size as the population the error range would be zero. Note: population is a statistical term referring to the whole; in this case the population is the total number of private sector dwellings.

The error range of the survey can be expressed in terms of the amount above or below a given figure that the true result is expected to lie. For example, in what range does the true figure for the proportion of dwellings with a Category 1 hazard lie. This error range is also affected by how confident we want to be about the results. It is usual to report these as the 95% confidence limits, i.e. the range either side of the reported figure within which one can be 95% confident that the true figure for the population will lie. In other words, if we re-ran the whole survey 100 times, we would expect that 95 times out of 100 the result would fall within a given range either side of the reported figure. This range is referred to as the standard deviation.
The calculation for standard deviation, within 95% confidence limits, is the standard error multiplied by 1.96. The following is the formula for calculating standard error:

\[s.e.(p) = \sqrt{\left(1 - \frac{n}{N}\right) \frac{p(1-p)}{n}} \]

Where \(s.e.(p) \) is the notation to describe the general formula for the standard error for a simple random sample.

\(N \) = the number of dwellings in the population.

\(n \) = the number of dwellings in the sample.

\(p \) = the proportion of dwellings in the sample with a particular attribute such as Category 1 hazards.

This formula can be used to calculate the confidence limits for the results of any attribute estimated in the survey. Figure 57 gives a number of sample sizes and the confidence limits for a range of different possible results.

Figure 57: 95% per cent confidence limits for a range of possible results and sample sizes

<table>
<thead>
<tr>
<th>Expected result as percentage</th>
<th>Sample size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100</td>
</tr>
<tr>
<td>10</td>
<td>5.9</td>
</tr>
<tr>
<td>20</td>
<td>7.8</td>
</tr>
<tr>
<td>30</td>
<td>9.0</td>
</tr>
<tr>
<td>40</td>
<td>9.6</td>
</tr>
<tr>
<td>50</td>
<td>9.8</td>
</tr>
<tr>
<td>60</td>
<td>9.6</td>
</tr>
<tr>
<td>70</td>
<td>9.0</td>
</tr>
<tr>
<td>80</td>
<td>7.8</td>
</tr>
<tr>
<td>90</td>
<td>5.9</td>
</tr>
</tbody>
</table>

Very Small Samples and Zero Results

When sub-dividing the results of a sample survey by multiple variables, it is possible to produce a result where no survey carried out matches these criteria. In such a case the result given will be zero, however, this can give a false impression that no such dwellings exist. In reality, it may well be possible that a very small number of dwellings, with the given characteristics, are present, but that in numbers that are too low to have been randomly picked by the sample.

In the case of the 2016 Additional and Selective Licensing Housing Stock Condition Survey HSCS, the average survey weight is approximately 32.4 (20,250 dwellings divided by 624 surveys). As a consequence, if there are fewer than 32 dwellings of a certain type within the Council area, the result from the survey will tend to be a very crude measure. This is because, based on the average weight, only a result of 0, 32 or 64 could be given, which if, in reality, there are 30 dwellings with a certain characteristic, is relatively imprecise.
Because of the points outlined above, the reader is encouraged to view extremely small or zero results with caution. It should be considered that these represent a small but indeterminate total, rather than none at all.
Appendix C

List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRE</td>
<td>Building Research Establishment</td>
</tr>
<tr>
<td>CERT</td>
<td>Carbon Emissions Reduction Target</td>
</tr>
<tr>
<td>CESP</td>
<td>Community Energy Savings Programme</td>
</tr>
<tr>
<td>CLG</td>
<td>Department for Communities and Local Government</td>
</tr>
<tr>
<td>CO2</td>
<td>Carbon Dioxide</td>
</tr>
<tr>
<td>COA</td>
<td>Census Output Area</td>
</tr>
<tr>
<td>DECC</td>
<td>Department for Energy and Climate Change</td>
</tr>
<tr>
<td>DFG</td>
<td>Disabled Facilities Grant</td>
</tr>
<tr>
<td>DHS</td>
<td>Decent Homes Standard</td>
</tr>
<tr>
<td>DWP</td>
<td>Department for Work and Pensions</td>
</tr>
<tr>
<td>EDMO</td>
<td>Empty Dwelling Management Order</td>
</tr>
<tr>
<td>EHCS</td>
<td>English House Condition Survey</td>
</tr>
<tr>
<td>EHS</td>
<td>English Housing Survey</td>
</tr>
<tr>
<td>GIS</td>
<td>Geographical Information System</td>
</tr>
<tr>
<td>HHSRS</td>
<td>Housing Health and Safety Rating System</td>
</tr>
<tr>
<td>HIA</td>
<td>Home Improvement Agency</td>
</tr>
<tr>
<td>HMO</td>
<td>House in Multiple Occupation</td>
</tr>
<tr>
<td>LPG</td>
<td>Liquefied petroleum gas</td>
</tr>
<tr>
<td>NPPF</td>
<td>National Planning Policy Framework</td>
</tr>
<tr>
<td>ODFP</td>
<td>Office of the Deputy Prime Minister</td>
</tr>
<tr>
<td>PSA</td>
<td>Public Service Agreement</td>
</tr>
<tr>
<td>PSHSCS</td>
<td>Private Sector Stock Condition Survey</td>
</tr>
<tr>
<td>PV</td>
<td>Photo Voltaic</td>
</tr>
<tr>
<td>RPs</td>
<td>Registered Providers</td>
</tr>
<tr>
<td>RRO</td>
<td>Regulatory Reform Order</td>
</tr>
<tr>
<td>RSL</td>
<td>Registered Social Landlord</td>
</tr>
<tr>
<td>S257 HMO</td>
<td>Section 257 House in Multiple Occupation</td>
</tr>
<tr>
<td>SAP</td>
<td>Standard Assessment Procedure</td>
</tr>
<tr>
<td>SEH</td>
<td>Survey of English Housing</td>
</tr>
<tr>
<td>TCS</td>
<td>Thermal Comfort Standard</td>
</tr>
</tbody>
</table>
Appendix D

Table of figures

Figure 1: Map showing Hastings and surrounding area with study area shaded dark blue ...8
Figure 2: Map of Hastings showing locations and boundaries of study area wards ...8
Figure 3: All dwellings by Occupancy Status – Private Dwellings (Source: HSCS 2016) ...9
Figure 4: Tenure proportions – Private Dwellings (Source: HSCS 2016, Census 2011, EHS 2014-15). ...10
Figure 5: Household Tenure in the Study Area – All Dwellings (Source: UK Census of Population 2001)11
Figure 6: Household Tenure in Study Area – All Dwellings (Source: UK Census of Population 2011)11
Figure 7: Proportion of Private Renting Households by Ward in Hastings – As a Proportion of All Dwellings (Source: UK Census of Population 2011) (Study area wards in dark blue) ...11
Figure 8: Building use profile – Private Dwellings (Source: HSCS 2016) ...12
Figure 9: Private tenancy, landlords and privately rented dwellings (Source: HSCS 2016) ...13
Figure 10: Fire safety provision in Private Rented Flats and HMOs (Source: HSCS 2016. Note: Dwellings may have more than one fire safety measure, so the number of measures will total more than the total number of dwellings) ..14
Figure 11: Dwelling age profile England & Study Area – Private Dwellings (Source: HSCS 2016, EHS 2014-15)15
Figure 12: Dwelling age profile by tenure in Study Area – Private Dwellings (Source: HSCS 2016) ...16
Figure 13: Dwelling type profile Study Area & England – Private Dwellings (Source: HSCS 2016, EHS 2014-15) (NB: due to low numbers, high rise and low rise purpose built flats* have been amalgamated) ..17
Figure 14: Proportion of dwelling type profile by tenure – Private Dwellings (Source: HSCS 2016) ...18
Figure 15: Dwelling size profile – Private Dwellings (Source: HSCS 2016, EHS 2014-15) ..19
Figure 16: Dwelling construction type – Private Dwellings (Source: HSCS 2016) ...20
Figure 17: Length of time at current address – Private Dwellings (Source: HSCS 2016) ..21
Figure 18: Disabled adaptations/equipment present where someone present has a disability or long-term limiting illness
 – Private Dwellings (Source: HSCS 2016. Note: Dwellings may have more than one adaptation present)22
Figure 19: Reasons for failure by Category 1 and Category 2 hazards (Source: HSCS 2016) ...27
Figure 20: Category 1 hazard reasons for failure by tenure (Source: HSCS 2015-16) ...27
Figure 21: Category 1 Hazards by area (Source: HSCS 2016) ...28
Figure 22: Category 1 Hazards by tenure (Source: HSCS 2016) ..28
Figure 23: Category 1 Hazards by construction date (Source: HSCS 2016) ...29
Figure 24: Category 1 Hazards by dwelling type (Source: HSCS 2016) ..29
Figure 25: Categories for dwelling decency ..31
Figure 26: Category 1 hazards by Tenure (Source: HSCS 2016) ...32
Figure 27: Criterion B – Major Elements (1 or more) ..33
Figure 28: Criterion B – Minor Elements (2 or more) ..33
Figure 29: Disrepair by Tenure (Source: HSCS 2016) ..33
Figure 30: Thermal Comfort by Tenure (Source: HSCS 2016) ...35
Figure 31: Reasons for failure of dwellings as a decent home (Source: HSCS 2016, EHS 2014) ...36
Figure 32: Non-decency by tenure (Source: HCS 2016) ...37
Figure 33: Non-decency by area (Source: HSCS 2016) ..37
Figure 34: Non-decency by build date (Source: HCS 2016) ...38
Figure 35: Non-decency by dwelling characteristics (Source: HSCS 2016) ..38
Figure 36: Repair cost by non-decency reason (Source: HSCS 2016) ..39
Figure 37: Repair cost by tenure for non-decency reason (Source: HCS 2016)39
Figure 38: Energy Performance SAP banded (Source: HSCS 2016, EHS 2014)43
Figure 39: SAP by area (Source: HSCS 2016) ...44
Figure 40: SAP by age of dwelling (Source: HSCS 2016) ...44
Figure 41: SAP by dwelling type (Source: HSCS 2016) ..45
Figure 42: SAP by tenure (Source: HCS 2016) ..45
Figure 43: Annual dwelling CO₂ emissions (Source: HSCS 2016) ..47
Figure 44: Main fuel CO₂ emissions (Source: HSCS 2016) ...47
Figure 45: Heating type by dwelling type (Source: HSCS 2016) ..48
Figure 46: Loft insulation by dwelling type (Source: HSCS 2016. Note: as this is a dwelling based survey, any flat not directly under a pitched roof counts as having no loft) ..49
Figure 47: Low energy light-bulbs and solar water heating (Source: HSCS 2016)50
Figure 48: Annual fuel costs by dwelling age (Source: HSCS 2016) ..51
Figure 49: Annual fuel costs by dwelling type, loft insulation and tenure (Source: HSCS 2016)52
Figure 50: Annual fuel costs by excess cold, thermal comfort and Decent Homes (Source: HSCS 2016) 53
Figure 51: Housing Benefit in Private Rented Sector as a Share of Total Dwellings by Hastings Wards and Wider Geographies 2015 (Source: CLG Live Table 100 March 2015; DWP) ...57
Figure 52: Trend in overcrowding rates for England by tenure (Note: Based on three-year moving average, up to and including the labelled date. Source: Survey of English Housing 1995-96 to 2007-08; English Housing Survey 2008-09 onwards) ...58
Figure 53: Overcrowding levels in the study area (by room and bedroom) 2001-2011. (Note: Overcrowded households are considered to have an occupancy rating of -1 or less. Source: UK Census of Population 2001 and 2011) ...60
Figure 54: Category 1 Hazards by area (Source: Private Sector House Condition Survey 2007, HCS 2016) ...73
Figure 55: Non-decency by area (Source: Private Sector House Condition Survey 2007, HSCS 2016) ...74
Figure 56: Average SAP rating by area (Source: Private Sector House Condition Survey 2007, HSCS 2016) ...74
Figure 57: 95% per cent confidence limits for a range of possible results and sample sizes85